【蓝桥杯】真题 2386染色时间 (优先队列BFS)

在这里插入图片描述

思路

这里每一个格子染色多了时间这一层限制,相当于图的每一边有了权重的限制,那么我们就不能直接用双向队列求最短路。而是使用优先队列。
规则是这样的:每一个节点可以多次入队,但是只有第一次出队有效。所以这次我们不会在加入队列时更改标签vis,而是在出队时更改标签。如果在出队时发现vis已经更改,这说明这个元素以前出过队列(不是第一次出队),则直接continue

code

我们额外设置两个数组,vis标签数组用于判断是否出队,dis距离数组用于记录到达这个位置花费的最小时间

import os
import sys
from queue import PriorityQueue
INF = int(1e9)

# 输入数据
n, m = map(int, input().split())
arr = [[0 for i in range(m+1)]]
for i in range(n):
  arr.append([0]+list(map(int,input().split())))

# 初始化vis和dis
vis = [[0 for i in range(m+1)] for j in range(n+1)]
dis = [[INF for i in range(m+1)] for j in range(n+1)]
dis[1][1] = arr[1][1] # 对于起点,dis就是其染色时间
dq = PriorityQueue()
dq.put((dis[1][1],1,1)) # 出发点入队

ans = 0
while not dq.empty():
  d, x, y = dq.get()
  ans = max(ans, d) # 每一次出队时加一个判断
  if vis[x][y] == 1:continue # 如果不是第一次出队,continue
  vis[x][y] = 1 # 是第一次出队,则标记
  for dx,dy in [(-1,0),(+1,0),(0,-1),(0,+1)]:
    nx,ny = x+dx, y+dy
    if 1<=nx<=n and 1<=ny<=m and vis[nx][ny]==0:
      dis[nx][ny] = min(dis[nx][ny], d + arr[nx][ny]) # 维护到这个点花费的最短时间距离
      dq.put((dis[nx][ny],nx,ny))
print(ans)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值