前言
随着计算机视觉技术的快速发展,目标检测技术在游戏辅助中扮演着重要角色,能够实时识别敌人、武器等目标,并提供精准定位。YOLO系列作为高效且精准的检测算法,适用于CS1.6等实时性要求高的游戏,支持自定义训练和跨平台兼容,帮助玩家快速反应并提升竞技水平。此外,结合自动瞄准功能,玩家可以实现更精准的射击,进一步增强游戏体验和竞技表现
一、YOLO是什么?
YOLO(You Only Look Once)是一种高效的实时目标检测算法,通过单阶段检测框架直接从图像中预测目标类别和边界框,具有高效性、高精度和端到端训练的特点。因其高效性和高精度,YOLO在游戏辅助领域广泛应用,能够实时检测敌人、武器等目标,并通过自动瞄准功能帮助玩家快速反应和精准射击,成为实时目标检测领域的标杆算法之一。
二、自动瞄准与射击
在实现鼠标控制时,通常会使用第三方库(如pyautogui)来模拟鼠标的操作。pyautogui是一个跨平台的Python库,提供了对鼠标和键盘的控制功能。通过pyautogui,程序可以模拟鼠标的移动、点击、按下和释放等操作,从而实现自动瞄准和射击。
三.具体实现
1. 捕捉游戏窗口截图
通过ImageGrab库捕捉特定游戏窗口(如CS1.6)的截图,并将其转换为适合处理的图像格式。
2.目标检测
使用训练好的YOLO模型对捕捉到的图像进行目标检测。其中,训练好的模型能够实时识别游戏画面中的敌人。
3.绘制边界框
在检测到的敌人周围绘制形框,并在框的左上角标注类别名称。这不仅有助于可视化检测结果,还能帮助玩家直观地确认敌人的位置。
4.模拟鼠标点击
通过pyautogui.click()函数,程序将鼠标移动到计算出的目标位置,并模拟鼠标点击操作。
5.退出机制
同时,我们设置了一个退出机制,玩家可以通过按下键盘上的’q’键退出程序。
代码(示例)
import win32gui
import torch
import cv2
import numpy as np
from PIL import ImageGrab
from pynput.mouse import Button, Controller
from utils.augmentations import letterbox
from utils.general import (non_max_suppression, scale_coords)
from models.experimental import attempt_load
conf_thres = 0.5
iou_thres = 0.45
color = (0, 255, 0)
weights = '1.pt'
wnd_name = 'xxx'
hwnd = win32gui.FindWindow(None, wnd_name)
rc = win32gui.GetClientRect(hwnd)
sc1 = win32gui.ClientToScreen(hwnd, (rc[0], rc[1]))
sc2 = win32gui.ClientToScreen(hwnd, (rc[2], rc[3]))
dx = 200
dy = 200
pos_x = (sc2[0] - sc1[0]) / 2 + sc1[0]
pos_y = (sc2[1] - sc1[1]) / 2 + sc1[1]
rect = (pos_x - dx, pos_y - dy, pos_x + dx, pos_y + dy)
mouse = Controller()
def run():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
half = device != 'cpu'
model = attempt_load(weights, device=device)
stride = max(int(model.stride.max()), 32)
model.float()
while True:
tars = []
im = ImageGrab.grab(bbox=rect)
img0 = np.array(im)
img = letterbox(img0, stride=stride)[0]
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device)
img = img.float()
img /= 255
if len(img.shape) == 3:
img = img[None]
img = img.permute(0, 3, 1, 2)
pred = model(img, augment=False, visualize=False)[0]
pred = non_max_suppression(pred, conf_thres, iou_thres)
for i, det in enumerate(pred):
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
for *xyxy, conf, cls in reversed(det):
cv2.rectangle(img0, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), color, 3)
tars.append(((xyxy[0] + xyxy[2]) / 2, (xyxy[3] - xyxy[1]) / 5 + xyxy[1], cls))
if len(tars):
tar = tars[0]
if tar[2] == 1:
rm_x = tar[0] - dx
rm_y = tar[1] - dy
mouse.move(rm_x, rm_y)
mouse.click(Button.left, 1)
tars = []
b, g, r = cv2.split(img0)
image_1 = cv2.merge([r, g, b])
cv2.imshow("display", np.array(image_1))
cv2.waitKey(1)
if __name__ == "__main__":
run()
四.实现效果
具体的实现效果如下:
-
目标检测效果
由图可知,通过对画面的实时捕捉,我们能实现对敌人的实时检测与锁定。
-
总体效果
通过一系列的实验与优化,我们最终实现效果如下:【Python项目实践(计算机视觉系列) cs1.6自动瞄准与开火系统】 https://www.bilibili.com/video/BV176qrY7EZd/?share_source=copy_web&vd_source=07a8b7b38d3a80d603594cda99648e41
总结
以上就是本文要介绍的内容。本文通过使用YOLO进行目标检测,并结合鼠标自动控制模块,实现游戏CS1.6中的自动瞄准与射击。