题目描述
给你一个整数M和数组N,N中的元素为连续整数,要求根据N中的元素组装成新的数组R,组装规则:
- R中元素总和加起来等于M
- R中的元素可以从N中重复选取
- R中的元素最多只能有1个不在N中,且比N中的数字都要小(不能为负数)
输入描述
第一行输入是连续数组N,采用空格分隔
第二行输入数字M
输出描述
输出的是组装办法数量,int类型
备注
- 1 ≤ M ≤ 30
- 1 ≤ N.length ≤ 1000
用例
输入 | 2 5 |
输出 | 1 |
说明 | 只有1种组装办法,就是[2,2,1] |
输入 | 2 3 5 |
输出 | 2 |
说明 | 一共两种组装办法,分别是[2,2,1],[2,3] |
题目解析
题目中的组装规则比较复杂,可以考虑使用回溯法来解决。回溯法的基本思路是枚举所有可能的情况,然后逐步排除不符合条件的情况,最终得到符合要求的结果。
在这道题中,我们可以通过枚举数组N中的元素来得到所有可能的情况。具体来说,我们从数组N的第一个元素开始,依次加入到结果数组R中,然后递归处理剩余部分。如果当前的结果数组R中的元素总和已经等于M了,那么这就是一种符合要求的组装办法,我们将其计数即可。如果当前的结果数组R中的元素总和还不足M,那么我们可以继续从数组N中的下一个元素开始递归处理。如果当前的结果数组R中的元素总和已经超过了M,那么这种情况不符合要求,我们需要回溯到上一层,尝试其他的情况。
需要注意的是,题目中要求结果数组R中最多只能有1个不在N中的元素,并且这个元素比N中的数字都要小。因此,在递归处理的过程中,我们需要记录当前结果数组R中最小的元素,然后在后续的递归中,只考虑比这个最小元素大的数字。这样可以保证结果数组R中最多只有1个不在N中的元素,并且这个元素比N中的数字都要小。
C++
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 深度优先搜索,index表示从数组的第几个元素开始搜索,sum表示当前已经选取的元素的和,min表示数组中最小的元素
// m表示要组成的和,count表示组装办法的数量
int dfs(vector<int>& arr, int index, int sum, int min, int m, int count) {
if (sum > m) {
// 如果当前已选取的元素和大于m,返回当前组装办法的数量
return count;
}
if (sum == m || (m - sum < min && m - sum > 0)) {
// 如果当前已选取的元素和等于m或者m减去当前已选取的元素和小于最小元素且大于0,返回当前组装办法的数量+1
return count + 1;
}
for (int i = index; i < arr.size(); i++) {
// 从index开始搜索
count = dfs(arr, i, sum + arr[i], min, m, count); // 递归搜索下一个元素
}
return count;
}
int getResult(vector<int>& arr, int m) {
arr.erase(remove_if(arr.begin(), arr.end(), [m](int val){
return val > m;}), arr.end()); // 只保留比m小的连续整数
int min = arr[0];
return dfs(arr, 0, 0