2022(一等奖)B1014基于深度学习与街景图像的城市色彩感知与分析——以深圳市罗湖区为例

 小组编号:B1014(一等奖)
作品名称:基于深度学习与街景图像的城市色彩感知与分析——以深圳罗湖区为例
作者单位:深圳大学建筑与城市规划学院
小组成员:吴若楠,曾绿,廖童欣,李丁一祺
指导老师:涂伟

作品视频

,时长14:53

作品介绍

1 应用背景

城市色彩是指城市外部空间中各种视觉事物所具有的色彩,是整个城市印象的重要组成部分,对于城市具有装饰作用、标志作用,体现并影响着城市的整体环境和特色风貌,并且承载着传递情感的重要作用[1-3]。但在城市发展过程中,由于缺乏总体的科学规划,城市色彩出现不协调、混乱甚至污染的问题,拉低了城市整体印象[4]。近年来,合理配置城市色彩成为营造城市形象的重要指标。2020年上海发布《营造城市色彩,建设美丽上海研究》规划文件,2022年,福州印发实施《福州市城市色彩规划实施导则》,国内越来越多城市开始重视并着手解决城市“色彩病”,打造各具特色的色彩空间。

根据心理学相关研究,人们的视觉感知可以迅速捕捉到事物的色彩。人们在城市中活动,城市色彩从视觉感官上作用于人们的情绪,对人们的生理、心理起到潜移默化的影响。尽管存在许多室内色彩对人的情绪影响的相关研究,从城市层面探究色彩对人的情绪影响的研究却少之又少。部分研究直接借用色彩心理学知识来解释,缺乏验证,无法直观呈现城市色彩对人们心理感受的实际影响,更难以将其应用于城市色彩分析之中。

在传统的城市色彩研究中,色彩分析依赖于手工化的小样本图像采集,选择部分代表区域精细化采样以保证一定的工作效率,不能解决精细化分析和大尺度需求的矛盾[5]。近年来,随着计算机视觉领域的发展和相关机器学习算法的开发,街景图像数据的采集以及机器学习的快速发展使得城市尺度下建筑色彩大规模、定量化测度成为可能,同时解决了精细化分析和大尺度需求之间的矛盾。

本作品基于万张城市街景影像,利用计算机视觉、机器学习等方法提出城市色彩分析新途径。具体过程如下:(1)通过爬取百度街景图像,构建街景影像数据库,设置问卷并通过问卷调查获得部分街景色彩评分数据集。(2)通过语义分割剔除街景影像的天空部分,利用聚类算法提取影像色彩,分析识别街道色彩空间配置。(3)利用深度学习方法结合评分数据集和色彩聚类结果对全部街景影像样本进行评价,分析色彩空间配置与居民感知的关系。通过以上过程,我们融合了客观街景色彩数据与主观色彩感知数据对城市色彩进行分析,为城市色彩规划提供参考,有利于改善城市视觉感受,打造独特城市色彩风格,从而达成提升城市形象的目标。

2 设计思路

2.1设计流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yorov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值