基于YOLO的智慧农业植物病害检测项目(vue+flask+数据集+模型训练)

一、项目演示视频

基于YOLO的智慧农业植物病害检测项目(vue+flask+数据集+模型训练)

二、技术栈

  1. 前端技术栈
  • HTML5/CSS3:页面结构和样式
  • Vue.js 3:前端响应式框架
  • Element Plus 2.4.1:UI组件库
  • JavaScript:前端交互逻辑
  • Echarts: 前端图表库
  1. 算法端技术栈
  • Python 3:主要编程语言
  • Flask 3.1.1:Web应用框架
  • Flask-CORS 6.0.1:跨域资源共享支持
  • Ultralytics 8.3.170:YOLO模型库
  • PyTorch 2.7.1:深度学习框架
  • Pillow 11.3.0:图像处理库
  • OpenCV 4.12.0:计算机视觉库

三、功能模块

  1. 用户管理
  • 用户登录:支持用户名密码登录
  • 用户注册:新用户可注册账号
  • 账户验证:确保系统安全性
  1. 植物病害检测
  • 图像检测:支持本地植物图像文件上传检测
  • 视频检测:支持本地视频文件逐帧检测分析
  • 实时摄像头检测:通过摄像头实时拍摄植物进行病害检测
  • 结果展示:显示检测框、病害类别(中英文)及置信度
  • 统计分析:提供详细的检测统计和分析结果
  • 多模型支持:提供已训练模型和新训练模型两种选择
  1. 模型数据查看
  • 训练数据展示:查看模型训练过程中的数据和指标
  • 验证结果展示:查看模型在测试集上的性能表现
  • 精度统计:展示模型检测精度、mAP等关键指标

四、项目链接

https://pan.baidu.com/s/11yF79h52am8kfJSmZ2HImw?pwd=wmip 提取码: wmip

  1. 完整系统源码
    (1)前端源码(web-flask/templates)
    (2)算法端源码(web-flask)
    (4)模型训练代码(other/model_train/detect)
  2. 部署教程
    (1)环境安装教程(视频+文档)
    (2)系统启动教程(视频+文档)
  3. 项目文档
    (1)系统介绍文档
    (2)模型训练文档
  4. 植物病害检测数据集(30类)
  • 总样本数:2328
  • 训练集:1629 (用于模型训练)
  • 验证集:465 (用于模型验证和性能调优)
  • 测试集:234 (用于模型最终性能评估)
  • 类别:苹果黑星病叶片、苹果叶片、苹果锈病叶片、甜椒叶片、甜椒叶斑病、蓝莓叶片、樱桃叶片、玉米灰叶斑病、玉米叶枯病、玉米锈病叶片、桃叶片、马铃薯叶片、马铃薯早疫病、马铃薯晚疫病、覆盆子叶片、大豆叶片、南瓜白粉病叶片、草莓叶片、番茄早疫病叶片、番茄叶斑病、番茄叶片、番茄细菌性斑点病、番茄晚疫病叶片、番茄花叶病毒、番茄黄化病毒、番茄霉病叶片、番茄双斑叶螨叶片、葡萄叶片、葡萄黑腐病叶片
  1. 已经训练好的模型和测试结果(精度如下)
  • precision: 0.459 (精确率)
  • recall: 0.533 (召回率)
  • mAP50: 0.533 (IoU阈值0.5时的平均精度)
  • mAP50-95: 0.359 (IoU阈值0.5-0.95的平均精度)
  • 基于YOLO v8架构的深度学习模型,针对植物病害特征优化
  • 部分类别检测精度表现优秀:玉米锈病叶片(mAP50: 0.962)、葡萄黑腐病叶片(mAP50: 0.995)、草莓叶片(mAP50: 0.871)等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值