一、项目演示视频
基于YOLO的智慧农业植物病害检测项目(vue+flask+数据集+模型训练)
二、技术栈
- 前端技术栈
- HTML5/CSS3:页面结构和样式
- Vue.js 3:前端响应式框架
- Element Plus 2.4.1:UI组件库
- JavaScript:前端交互逻辑
- Echarts: 前端图表库
- 算法端技术栈
- Python 3:主要编程语言
- Flask 3.1.1:Web应用框架
- Flask-CORS 6.0.1:跨域资源共享支持
- Ultralytics 8.3.170:YOLO模型库
- PyTorch 2.7.1:深度学习框架
- Pillow 11.3.0:图像处理库
- OpenCV 4.12.0:计算机视觉库
三、功能模块
- 用户管理
- 用户登录:支持用户名密码登录
- 用户注册:新用户可注册账号
- 账户验证:确保系统安全性
- 植物病害检测
- 图像检测:支持本地植物图像文件上传检测
- 视频检测:支持本地视频文件逐帧检测分析
- 实时摄像头检测:通过摄像头实时拍摄植物进行病害检测
- 结果展示:显示检测框、病害类别(中英文)及置信度
- 统计分析:提供详细的检测统计和分析结果
- 多模型支持:提供已训练模型和新训练模型两种选择
- 模型数据查看
- 训练数据展示:查看模型训练过程中的数据和指标
- 验证结果展示:查看模型在测试集上的性能表现
- 精度统计:展示模型检测精度、mAP等关键指标
四、项目链接
https://pan.baidu.com/s/11yF79h52am8kfJSmZ2HImw?pwd=wmip 提取码: wmip
- 完整系统源码
(1)前端源码(web-flask/templates)
(2)算法端源码(web-flask)
(4)模型训练代码(other/model_train/detect) - 部署教程
(1)环境安装教程(视频+文档)
(2)系统启动教程(视频+文档) - 项目文档
(1)系统介绍文档
(2)模型训练文档 - 植物病害检测数据集(30类)
- 总样本数:2328
- 训练集:1629 (用于模型训练)
- 验证集:465 (用于模型验证和性能调优)
- 测试集:234 (用于模型最终性能评估)
- 类别:苹果黑星病叶片、苹果叶片、苹果锈病叶片、甜椒叶片、甜椒叶斑病、蓝莓叶片、樱桃叶片、玉米灰叶斑病、玉米叶枯病、玉米锈病叶片、桃叶片、马铃薯叶片、马铃薯早疫病、马铃薯晚疫病、覆盆子叶片、大豆叶片、南瓜白粉病叶片、草莓叶片、番茄早疫病叶片、番茄叶斑病、番茄叶片、番茄细菌性斑点病、番茄晚疫病叶片、番茄花叶病毒、番茄黄化病毒、番茄霉病叶片、番茄双斑叶螨叶片、葡萄叶片、葡萄黑腐病叶片
- 已经训练好的模型和测试结果(精度如下)
- precision: 0.459 (精确率)
- recall: 0.533 (召回率)
- mAP50: 0.533 (IoU阈值0.5时的平均精度)
- mAP50-95: 0.359 (IoU阈值0.5-0.95的平均精度)
- 基于YOLO v8架构的深度学习模型,针对植物病害特征优化
- 部分类别检测精度表现优秀:玉米锈病叶片(mAP50: 0.962)、葡萄黑腐病叶片(mAP50: 0.995)、草莓叶片(mAP50: 0.871)等