深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL等先进技术。识别玉米、水稻、草莓和西红柿的常见病虫害,为农业病虫害的分析、预防和管理提供智能解决方案。
建立目标:
同学
我要实现这个功能;
主要功能:
多方式检测:支持图片、视频和摄像头实时检测三种方式,可适用于各种环境。
农作物病虫害识别: 玉米:疫病、普通锈病、灰斑病、健康
水稻:褐斑病、稻瘟病、细菌性叶枯病
草莓:角斑病、炭疽果腐病、花枯病、灰霉病、叶斑病、白粉病果、白粉病叶
西红柿:早疫病、晚疫病、潜叶病、叶霉病、花叶病毒、蜘蛛螨等
深度学习支持:使用YOLOv1至YOLOv11模型,支持多种权重的目标检测,精度高、速度快。
实时监控与预测:支持通过摄像头进行实时监测,并自动识别作物病虫害。
模型训练与自定义:用户可以使用自定义数据集重新训练模型,生成新的权重文件,支持YOLOv1到YOLOv11的训练。
简洁美观的UI:采用Vue3前端框架,支持主题颜色、布局和组件大小的个性化定制,兼容深色模式与色弱模式。
技术栈:
前端:Vue3、Element-Plus、TypeScript
后端:SpringBoot、MyBatis-Plus、Flask
深度学习:YOLOv11、Pytorch
数据库:MySQL
视频处理:FFmpeg
适用场景:
农业生产管理与病虫害防控/农业科技研发/智能农业应用
(前端、后端、YOLO算法)
构建基于YOLOv11深度学习模型的农作物病虫害检测识别系统,融合PyTorch、Flask、SpringBoot、Vue和MySQL等技术,是一个复杂的项目。
如何实现这个系统,包括前端、后端、深度学习模型训练和部署等方面。
1. 系统架构概述
前端
- 框架: Vue3 + Element-Plus + TypeScript
- 功能: 图片上传、视频播放、摄像头实时流处理、结果展示、用户管理等。
后端
- 框架: Flask (用于API接口) + SpringBoot (用于数据库操作)
- 功能: 接收前端请求、调用YOLOv11模型进行预测、返回结果、存储数据等。
深度学习
- 框架: PyTorch
- 模型: YOLOv11
- 功能: 训练模型、加载模型、进行预测。
数据库
- 数据库: MySQL
- 功能: 存储用户信息、检测记录等。
视频处理
- 工具: FFmpeg
- 功能: 处理视频流,提取帧进行检测。
2. 前端开发
安装依赖
npm install
创建Vue应用
vue create my-agriculture-app
cd my-agriculture-app
npm install element-plus @element-plus/icons-vue
主要组件
ImageDetection.vue
: 图片检测页面VideoDetection.vue
: 视频检测页面CameraDetection.vue
: 摄像头实时检测页面UserManagement.vue
: 用户管理页面
示例代码
<template>
<div>
<el-button @click="detect">开始检测</el-button>
<img :src="imageSrc" alt="检测图片" />
<div>{{ detectionResult }}</div>
</div>
</template>
<script setup>
import { ref } from 'vue';
import axios from 'axios';
const imageSrc = ref('');
const detectionResult = ref('');
const detect = async () => {
const formData = new FormData();
formData.append('image', document.getElementById('imageInput').files[0]);
try {
const response = await axios.post('/api/detect', formData, {
headers: { 'Content-Type': 'multipart/form-data' },
});
detectionResult.value = response.data.result;
imageSrc.value = URL.createObjectURL(document.getElementById('imageInput').files[0]);
} catch (error) {
console.error(error);
}
};
</script>
<style scoped>
/* Add your styles here */
</style>
3. 后端开发
Flask API
from flask import Flask, request, jsonify
import torch
from ultralytics import YOLO
app = Flask(__name__)
model = YOLO('path/to/your/model.pt')
@app.route('/api/detect', methods=['POST'])
def detect():
file = request.files['image']
results = model(file)
return jsonify({'result': results[0].boxes.cls.tolist()})
if __name__ == '__main__':
app.run(debug=True)
SpringBoot 数据库操作
@RestController
@RequestMapping("/api")
public class UserController {
@Autowired
private UserRepository userRepository;
@GetMapping("/users")
public List<User> getUsers() {
return userRepository.findAll();
}
// Other endpoints for database operations
}
4. 深度学习模型训练与部署
训练模型
python train.py --data path/to/data.yaml --weights yolov8n.pt --epochs 100
部署模型
python detect.py --source path/to/image.jpg --weights path/to/your/best.pt
5. 数据库设计
MySQL表结构
CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
username VARCHAR(50),
password VARCHAR(100)
);
CREATE TABLE detections (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT,
image_path VARCHAR(255),
result TEXT,
FOREIGN KEY (user_id) REFERENCES users(id)
);
6. 视频处理
使用FFmpeg处理视频流
ffmpeg -i input.mp4 -vf "select=eq(pict_type\,I)" output_%03d.png
7. 整合与测试
- 前端: 调试UI界面,确保交互流畅。
- 后端: 测试API接口,确保响应正确。
- 深度学习: 确保模型准确率高,性能稳定。
- 数据库: 测试数据存储和查询功能。
- 视频处理: 确保视频流处理和检测功能正常。
8. 运行系统
-
启动Flask服务器:
python app.py
-
启动SpringBoot应用:
mvn spring-boot:run
-
启动前端应用:
npm run serve
代码仅供参考。
同学,跟着这个节奏来构建一个完整的农作物病虫害检测识别系统。