深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL 对玉米、水稻、草莓和西红柿的常见病虫害进行检测

深度学习基于YOLOv11农作物病虫害检测识别系统,融合Pytorch、Flask、SpringBoot、Vue、MySQL等先进技术。识别玉米、水稻、草莓和西红柿的常见病虫害,为农业病虫害的分析、预防和管理提供智能解决方案。
在这里插入图片描述

建立目标:
在这里插入图片描述
同学
我要实现这个功能;

主要功能:
多方式检测:支持图片、视频和摄像头实时检测三种方式,可适用于各种环境。
农作物病虫害识别: 玉米:疫病、普通锈病、灰斑病、健康
水稻:褐斑病、稻瘟病、细菌性叶枯病
草莓:角斑病、炭疽果腐病、花枯病、灰霉病、叶斑病、白粉病果、白粉病叶
西红柿:早疫病、晚疫病、潜叶病、叶霉病、花叶病毒、蜘蛛螨等
深度学习支持:使用YOLOv1至YOLOv11模型,支持多种权重的目标检测,精度高、速度快。
实时监控与预测:支持通过摄像头进行实时监测,并自动识别作物病虫害。
模型训练与自定义:用户可以使用自定义数据集重新训练模型,生成新的权重文件,支持YOLOv1到YOLOv11的训练。
简洁美观的UI:采用Vue3前端框架,支持主题颜色、布局和组件大小的个性化定制,兼容深色模式与色弱模式。
在这里插入图片描述

技术栈:
前端:Vue3、Element-Plus、TypeScript
后端:SpringBoot、MyBatis-Plus、Flask
深度学习:YOLOv11、Pytorch
数据库:MySQL在这里插入图片描述

视频处理:FFmpeg
适用场景:
农业生产管理与病虫害防控/农业科技研发/智能农业应用
(前端、后端、YOLO算法)
在这里插入图片描述

构建基于YOLOv11深度学习模型的农作物病虫害检测识别系统,融合PyTorch、Flask、SpringBoot、Vue和MySQL等技术,是一个复杂的项目。

如何实现这个系统,包括前端、后端、深度学习模型训练和部署等方面。

1. 系统架构概述

前端
  • 框架: Vue3 + Element-Plus + TypeScript
  • 功能: 图片上传、视频播放、摄像头实时流处理、结果展示、用户管理等。
    在这里插入图片描述
后端
  • 框架: Flask (用于API接口) + SpringBoot (用于数据库操作)
  • 功能: 接收前端请求、调用YOLOv11模型进行预测、返回结果、存储数据等。
深度学习
  • 框架: PyTorch
  • 模型: YOLOv11
  • 功能: 训练模型、加载模型、进行预测。
数据库
  • 数据库: MySQL
  • 功能: 存储用户信息、检测记录等。
视频处理
  • 工具: FFmpeg
  • 功能: 处理视频流,提取帧进行检测。

2. 前端开发

安装依赖
npm install
创建Vue应用
vue create my-agriculture-app
cd my-agriculture-app
npm install element-plus @element-plus/icons-vue
主要组件
  • ImageDetection.vue: 图片检测页面
  • VideoDetection.vue: 视频检测页面
  • CameraDetection.vue: 摄像头实时检测页面
  • UserManagement.vue: 用户管理页面
示例代码
<template>
  <div>
    <el-button @click="detect">开始检测</el-button>
    <img :src="imageSrc" alt="检测图片" />
    <div>{{ detectionResult }}</div>
  </div>
</template>

<script setup>
import { ref } from 'vue';
import axios from 'axios';

const imageSrc = ref('');
const detectionResult = ref('');

const detect = async () => {
  const formData = new FormData();
  formData.append('image', document.getElementById('imageInput').files[0]);

  try {
    const response = await axios.post('/api/detect', formData, {
      headers: { 'Content-Type': 'multipart/form-data' },
    });
    detectionResult.value = response.data.result;
    imageSrc.value = URL.createObjectURL(document.getElementById('imageInput').files[0]);
  } catch (error) {
    console.error(error);
  }
};
</script>

<style scoped>
/* Add your styles here */
</style>

3. 后端开发

Flask API
from flask import Flask, request, jsonify
import torch
from ultralytics import YOLO

app = Flask(__name__)

model = YOLO('path/to/your/model.pt')

@app.route('/api/detect', methods=['POST'])
def detect():
    file = request.files['image']
    results = model(file)
    return jsonify({'result': results[0].boxes.cls.tolist()})

if __name__ == '__main__':
    app.run(debug=True)
SpringBoot 数据库操作
@RestController
@RequestMapping("/api")
public class UserController {

    @Autowired
    private UserRepository userRepository;

    @GetMapping("/users")
    public List<User> getUsers() {
        return userRepository.findAll();
    }

    // Other endpoints for database operations
}

4. 深度学习模型训练与部署

训练模型
python train.py --data path/to/data.yaml --weights yolov8n.pt --epochs 100
部署模型
python detect.py --source path/to/image.jpg --weights path/to/your/best.pt

5. 数据库设计

MySQL表结构
CREATE TABLE users (
    id INT AUTO_INCREMENT PRIMARY KEY,
    username VARCHAR(50),
    password VARCHAR(100)
);

CREATE TABLE detections (
    id INT AUTO_INCREMENT PRIMARY KEY,
    user_id INT,
    image_path VARCHAR(255),
    result TEXT,
    FOREIGN KEY (user_id) REFERENCES users(id)
);

6. 视频处理

使用FFmpeg处理视频流
ffmpeg -i input.mp4 -vf "select=eq(pict_type\,I)" output_%03d.png

7. 整合与测试

  • 前端: 调试UI界面,确保交互流畅。
  • 后端: 测试API接口,确保响应正确。
  • 深度学习: 确保模型准确率高,性能稳定。
  • 数据库: 测试数据存储和查询功能。
  • 视频处理: 确保视频流处理和检测功能正常。

8. 运行系统

  • 启动Flask服务器:

    python app.py
    
  • 启动SpringBoot应用:

    mvn spring-boot:run
    
  • 启动前端应用:

    npm run serve
    

代码仅供参考。

同学,跟着这个节奏来构建一个完整的农作物病虫害检测识别系统。

### 整合 Spring Boot、Vue PyTorch 进行项目开发 #### 1. 技术栈简介 Spring Boot 是一种用于创建独立的、生产级的基于 Spring 框架的应用程序工具,简化了 Spring 应用的初始搭建以及开发过程。它集成了大量 Spring 生态系统组件,如自动配置、内嵌 Tomcat 服务器等特性,使开发者能够快速启动服务并处理 HTTP 请求,提供 RESTful API 并与数据库交互[^3]。 Vue.js 是一款构建用户界面的渐进式 JavaScript 框架。其设计目标是通过尽可能简单的 API 实现响应的数据绑定组合的视图组件。Vue 可以很容易地上手现有项目的集成工作,并且可以逐步扩展到大型单页应用程序 (SPA)[^4]。 PyTorch 则是一个开源机器学习库,支持从研究原型到生产部署的无缝过渡。由于其灵活性易用性,在学术界工业界都得到了广泛应用。特别是对于计算机视觉领域中的模型训练非常有用,比如 YOLOv5 DeepSORT 等算法实现[^1]。 #### 2. 构建流程概览 为了将这三个技术结合起来完成一个完整的 Web 开发项目,通常会遵循如下架构: - **前端部分** 使用 Vue.js 来负责页面展示逻辑; - **后端部分** 基于 Spring Boot 提供业务接口服务调用; - **AI模块** 将 PyTorch 训练好的模型封装成微服务形式运行在后台,接受来自其他两者的请求来执行预测任务; 这种分层结构不仅有助于团队成员专注于各自擅长的技术领域,同时也提高了系统的可维护性性能表现。 #### 3. 配置说明 ##### 后端 - Spring Boot 设置 确保安装好 JDK8 或以上版本之后,可以通过 Maven 创建一个新的 Spring Boot 工程。接着引入必要的依赖项,例如 `spring-boot-starter-web` 用来支持 web 功能,还有 `spring-boot-starter-data-jpa` 如果涉及到关系型数据库操作的话。最后编写控制器类定义 API 接口以便前后端通信。 ```java @RestController @RequestMapping("/api") public class MyController { @GetMapping("/hello") public String hello() { return "Hello from backend!"; } } ``` ##### 前端 - Vue CLI 初始化 利用 npm 安装全局命令行工具 vue-cli ,然后按照提示新建工程文件夹。修改 src 下 main.js 文件导入 App.vue 组件作为入口点。编辑 package.json 添加代理设置指向本地 spring boot server 地址从而解决跨域问题。 ```json // package.json snippet { ... "devServer": { "proxy": "http://localhost:8080" }, ... } ``` ##### AI 模块 - Flask + PyTorch 微服务 考虑到 Python 编写的 PyTorch 脚本难以直接嵌入 Java 程序中,因此建议采用轻量级 WSGI 服务器 Flask 对外暴露 RESTful API 。这样既不影响原有系统的稳定性又能方便地与其他语言环境对接交流数据。 ```python from flask import Flask, request, jsonify import torch app = Flask(__name__) model = None @app.route('/predict', methods=['POST']) def predict(): global model input_data = request.get_json() with torch.no_grad(): # 不计算梯度 output = model(input_data) result = {"prediction": str(output)} return jsonify(result) if __name__ == '__main__': # 加载预训练模型... app.run(host='0.0.0.0') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值