C语言—指针

概念

用于存放内存地址的变量叫指针变量。(每个内存都是一个编号。本质是整形数字(0~ffffffff))。

特点

高效访问数据

间接访问变量

可以操作底层硬件(操作硬件的寄存器)

运算符

取地址运算符
获得对应变量的内存的首地址(在内存中存储这个变量的起始的内存编号)
取地址操作只能操作变量,不能操作表达式,常量
int a =100; // int
&a; == 0x2000; // int * ,相当变量的类型升级-》升级为对应基类型的指针
如果需要打印地址的话,printf("%p\n",&a);
所有的指针都是 8个字节(64bit),不论什么类型。在64bit系统中,内存地址的范围0~ffffffff ffffffff ,刚好可以使用一个8字节的整数表示。
* 解引用 ,获得指针变量指向空间的内容。 操作对象是指针,或地址
* &a- int 相当给指针降级 ,有原来的指针类型转换为对应基类型变量。
在解引用操作过程中,指针的类型有关。 从首地址开始,加上 sizeof(基类型)大小后,在取出内存中的数据。
*p 
1 .找到对应的内存地址
2.根据类型 ,sizeof(基类型) , 从首地址开始,加上 sizeof(基类型)大小后,在取出内存中的数据。
3.使用数据。读写数据。
* 和& 运算符,是互为反操作。

指针定义

基类型 * 指针名;
int* p; // int* 表示的是类型说明符
int a=100;
p =&a; p指针中存储了a的地址,p指向了a
int c = *p; int c=100 *p = int 读出指针指向内容
*p = 200; *p int ,左值情况 *p == a 向指针指向的内存,写入新的数据。
int       *p;
char    *p;
float    *p;
double *p
int *p,q; //    p -int*    q->int

初始化

int*p; 没有初始化的指针,
野指针
1,p中存储的地址,使用随机值。
2,指向了一个已经释放的内存空间。
先定义指针,稍后在p中装入地址。
int *q = NULL;// NULL == (void*)0
注意事项,指针变量在进行读写操作前,需要给定确定的地址(NULL,不能读写)。
int num1 = 20;
int num2 =10;
int*p = &num1;
int* q=&num2;
//int ret = num1+num2; 对变量的直接访问
int ret = 0 ;
ret = *p + *q; //对变量的间接访问

指针算数运算

+ - ++ --
int a =100;
int *p = &a;
printf("%p\n",p);
printf("%p\n",&a);
printf("%p\n",p+1);
int b[5]={1,2,3,4,5};
int *p=NULL;
int* q = &b[2];
//p = &b[0]; p=&b[0] p=b 是等价的
p = b;
指针的加操作
for(i=0;i<5;i++)
{
printf("%d %d\n",i,*(p+i)); //p+1 , p的地址值+ sizeof(基类型)
}
for 循环运行完后,p指针还在原来位置,也及时 p指向 b[0];
for(i=0;i<5;i++)
{
printf("%d %d\n",i,*(p++));
}
for 循环运行完后,p指针指向数组最后一个元素的下一个,也及时 p指向 b[5](这个一个越界的位置);
指针相减
int b[5]={1,2,3,4,5};
int *p=NULL;
int* q = &b[2];
//p = &b[0]; p=&b[0] p=b 是等价的
p = b;
printf(" q -p %ld\n",q-p); // pq都是指向同一个数组。差值表示两个指针之间相差元素的个数
。不是直接地址值相减。

多字节数据的大小端存储

多字节数据的在内存的存储方式

1.小端字节序 数据的低数据位,在内存低地址,数据的高数据位,在内存的高地址

2.大端字节序数据的低数据位,在内存高地址,数据的高数据位,在内存的低地址

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习和研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度和稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能和输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习和修改: 通过阅读模型中的注释和查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值