机器学习笔记

前言

一、机器学习(Machine learning)

常用的学习算法类型(Machine learning algorithms)
监督学习(Supervised learning)

无监督学习(Unsupervised learning)

推荐系统(Recommender systems)

强化学习(Reinforcement learning)

二、监督学习

首先输入x的示例和正确答案,即标签y,来训练模型,模型从对这些输入输出的学习,来处理全新的输入。

监督学习问题一般有:

回归(Regression):预测一个具体的数字;

分类(Classification):预测类别或者离散类别

三、无监督学习

自己从数据集中,找到某种结构或模式或学习到一些“有趣”的事情。

比如:聚类算法(Clustering)。一种无监督的学习算法,接受无标签数据并尝试将其自动分为簇。

异常检测(Anomaly detection)

降维(Dimensionality reduction):将大数据集压缩到一个更小的数据集 同时尽可能少的丢失信息

线性回归模型

梯度下降法

Preface Machine learning algorithms dominate applied machine learning. Because algorithms are such a big part of machine learning you must spend time to get familiar with them and really understand how they work. I wrote this book to help you start this journey. You can describe machine learning algorithms using statistics, probability and linear algebra. The mathematical descriptions are very precise and often unambiguous. But this is not the only way to describe machine learning algorithms. Writing this book, I set out to describe machine learning algorithms for developers (like myself). As developers, we think in repeatable procedures. The best way to describe a machine learning algorithm for us is: 1. In terms of the representation used by the algorithm (the actual numbers stored in a file). 2. In terms of the abstract repeatable procedures used by the algorithm to learn a model from data and later to make predictions with the model. 3. With clear worked examples showing exactly how real numbers plug into the equations and what numbers to expect as output. This book cuts through the mathematical talk around machine learning algorithms and shows you exactly how they work so that you can implement them yourself in a spreadsheet, in code with your favorite programming language or however you like. Once you possess this intimate knowledge, it will always be with you. You can implement the algorithms again and again. More importantly, you can translate the behavior of an algorithm back to the underlying procedure and really know what is going on and how to get the most from it. This book is your tour of machine learning algorithms and I’m excited and honored to be your tour guide. Let’s dive in.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who This Book Is For This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide. Table of Contents Machine Learning Model Fundamentals Introduction to Semi-Supervised Learning Graph-based Semi-Supervised Learning Bayesian Networks and Hidden Markov Models EM algorithm and applications Hebbian Learning Advanced Clustering and Feature Extraction Ensemble Learning Neural Networks for Machine Learning Advanced Neural Models Auto-Encoders Generative Adversarial Networks Deep Belief Networks Introduction to Reinforcement Learning Policy estimation algorithms
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值