前言
一、机器学习(Machine learning)
常用的学习算法类型(Machine learning algorithms)
监督学习(Supervised learning)
无监督学习(Unsupervised learning)
推荐系统(Recommender systems)
强化学习(Reinforcement learning)
二、监督学习
首先输入x的示例和正确答案,即标签y,来训练模型,模型从对这些输入输出的学习,来处理全新的输入。
监督学习问题一般有:
回归(Regression):预测一个具体的数字;
分类(Classification):预测类别或者离散类别
三、无监督学习
自己从数据集中,找到某种结构或模式或学习到一些“有趣”的事情。
比如:聚类算法(Clustering)。一种无监督的学习算法,接受无标签数据并尝试将其自动分为簇。
异常检测(Anomaly detection)
降维(Dimensionality reduction):将大数据集压缩到一个更小的数据集 同时尽可能少的丢失信息