认知无线电中的能量检测算法研究(包含:不同SNR、不同噪声不确定性、不确定噪声和动态阈值比较)(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

认知无线电中能量检测算法研究:SNR、噪声不确定性与动态阈值的综合分析

一、能量检测算法的基本原理

二、不同SNR条件下的性能分析

四、不确定噪声场景下的改进方法

五、动态阈值设定策略比较

六、未来研究方向

结论

📚2 运行结果

2.1 不同的N值

2.2 不同的SNR

2.3 不同的噪声不确定性

2.4 不确定噪声和动态阈值比较

2.5 所有案例比较

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

认知无线电中能量检测算法研究:SNR、噪声不确定性与动态阈值的综合分析

一、能量检测算法的基本原理

能量检测(Energy Detection, ED)是认知无线电中最基础的频谱感知技术,其核心原理是将接收信号能量与预设阈值进行比较,判断信道是否被主用户(PU)占用。该过程可建模为二元假设问题:


二、不同SNR条件下的性能分析
  1. 高SNR场景
    随着SNR增加,检测概率 PdPd​ 显著提升。例如,当SNR从-15 dB提升至-5 dB时,PdPd​ 可从接近0升至90%以上[21][56]。此时,信号能量远高于噪声,能量检测鲁棒性较强。

  2. 低SNR场景
    当SNR低于-17 dB时,传统能量检测的 PdPd​ 趋近于0,此时需通过以下方法改善性能:

    • 增加采样点数:延长观测时间可提升低SNR下的检测概率(例如,采样点数从100增至1000时,PdPd​ 提升约30%)[56]。
    • 协作感知:多节点协作通过“或”准则融合结果,可突破单节点检测极限。例如,在SNR=-20 dB时,10节点协作可使 PdPd​ 从0提升至60%[56][83]。
    • 机器学习辅助:基于k-NN或随机森林的算法在低SNR下表现优于传统ED,但高SNR时复杂度增加可能限制其应用[27].
  3. 动态SNR适应性

  4.  车联网等快速时变场景中,需结合多特征参数(如能量、协方差矩阵特征值)与神经网络分类,以保持跨SNR范围的稳定性。

四、不确定噪声场景下的改进方法
  1. 双阈值策略

    • 固定双阈值:设置上下限 λLλL​ 和 λHλH​,能量介于两者时触发重检或协作判决。例如,自适应双阈值在SNR=-10 dB时提升 PdPd​ 27-39%。
    • 动态调整:基于历史能量或SNR权重系数调整阈值,避免固定阈值在NU下的失效。
  2. 噪声功率建模

    • 均匀分布假设:NP-AVE/NP-AVN检测器通过平均似然比消除对噪声功率的依赖,在NU=3 dB时 PdPd​ 提升40%。
    • Huber混合模型:鲁棒估计噪声方差,降低NU对阈值的影响。
  3. 协作感知优化

    • 硬融合准则:OR准则在低SNR和小规模网络中表现最佳,Majority准则适用于大规模网络。
    • 增强能量检测:结合协方差矩阵特征值分析,在非同分布噪声下最小化总错误率
五、动态阈值设定策略比较
方法原理优势局限性
固定双阈值预设上下限,能量介于区间时触发协作判决复杂度低,适合实时系统需先验NU范围,低SNR时无效
BPSO优化阈值二进制粒子群算法动态优化阈值,最小化总感知错误自适应性强,PdPd​ 提升显著(SNR=3 dB时优化后错误率降50%)计算复杂度高,需离线训练
隐马尔可夫模型预测结合信道状态预测与动态阈值调整提升吞吐量,适用于时变信道模型训练复杂,需大量历史数据
噪声功率实时测量动态根据当前噪声水平调整阈值(如基于FFT的频域能量检测)无需先验知识,鲁棒性高实时计算资源需求较大

六、未来研究方向
  1. 多维度融合检测:结合能量、循环平稳特征与深度学习,突破SNR墙限制。
  2. 低复杂度动态阈值算法:探索轻量级优化算法(如遗传算法)在实时系统中的应用。
  3. 跨层设计:联合频谱感知与资源分配,优化系统级吞吐量与能耗。

结论

能量检测算法的性能受SNR、噪声不确定性及阈值策略的显著影响。在高SNR场景中,传统ED表现优异;低SNR时需结合协作感知与动态阈值优化。噪声不确定性可通过双阈值、均匀分布建模或机器学习方法缓解。未来研究需进一步平衡算法复杂度与性能,推动认知无线电在5G/6G及物联网中的实际应用。

📚2 运行结果

2.1 不同的N值

2.2 不同的SNR

2.3 不同的噪声不确定性

2.4 不确定噪声和动态阈值比较

2.5 所有案例比较

部分代码:

%% Simulation to plot Probability of Detection (Pd) vs. Probability of False Alarm (Pf) 
for m = 1:length(Pf)
    
    i = 0;i2=0;i3=0;i4=0;
for kk=1:10000 % Number of Monte Carlo Simulations
 n = randn(1,L); n2 = sqrt(1.01).*randn(1,L);%AWGN noise with mean 0 and variance 
 %s = sqrt(snr).*randn(1,L); % Real valued Gaussina Primary User Signal 
 s = sqrt(snr).*bpsk_w;
 %s = 1/sqrt(2)*sqrt(snr).*randn(1,L)+randn(1,L);
 y = s + n;y2 = s + n2; % Received signal at SU
 energy = abs(y).^2;  energy2 = abs(y2).^2;% Energy of received signal over N samples
 energy_fin =(1/L).*sum(energy);energy_fin2 =(1/L).*sum(energy2); % Test Statistic for the energy detection
 thresh(m) = (qfuncinv(Pf(m))./sqrt(L))+ 1;  thresh2(m) = (qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02;thresh3(m) = ((qfuncinv(Pf(m))./sqrt(L))+ 1)./1.002;thresh4(m) = ((qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02)./1.001;% Theoretical value of Threshold, refer, Sensing Throughput Tradeoff in Cognitive Radio, Y. C. Liang
 if(energy_fin >= thresh(m))  % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
     i = i+1;
 end
  if(energy_fin2 >= thresh2(m))  % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
     i2 = i2+1;

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]董淑雅.认知无线电中宽带频域能量检测算法研究[D].海南大学,2016.

2]虞贵财,罗涛,乐光新.认知无线电系统中协同能量检测算法的性能研究[J].电子与信息学报, 2009(11):5.

[3]吴进波,罗涛,乐光新.认知无线电系统中的两判决门限能量检测算法[J].高技术通讯, 2009, 19(9):4.

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值