💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
认知无线电中能量检测算法研究:SNR、噪声不确定性与动态阈值的综合分析
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
认知无线电中能量检测算法研究:SNR、噪声不确定性与动态阈值的综合分析
一、能量检测算法的基本原理
能量检测(Energy Detection, ED)是认知无线电中最基础的频谱感知技术,其核心原理是将接收信号能量与预设阈值进行比较,判断信道是否被主用户(PU)占用。该过程可建模为二元假设问题:
二、不同SNR条件下的性能分析
-
高SNR场景
随着SNR增加,检测概率 PdPd 显著提升。例如,当SNR从-15 dB提升至-5 dB时,PdPd 可从接近0升至90%以上[21][56]。此时,信号能量远高于噪声,能量检测鲁棒性较强。 -
低SNR场景
当SNR低于-17 dB时,传统能量检测的 PdPd 趋近于0,此时需通过以下方法改善性能:- 增加采样点数:延长观测时间可提升低SNR下的检测概率(例如,采样点数从100增至1000时,PdPd 提升约30%)[56]。
- 协作感知:多节点协作通过“或”准则融合结果,可突破单节点检测极限。例如,在SNR=-20 dB时,10节点协作可使 PdPd 从0提升至60%[56][83]。
- 机器学习辅助:基于k-NN或随机森林的算法在低SNR下表现优于传统ED,但高SNR时复杂度增加可能限制其应用[27].
-
动态SNR适应性
-
车联网等快速时变场景中,需结合多特征参数(如能量、协方差矩阵特征值)与神经网络分类,以保持跨SNR范围的稳定性。
四、不确定噪声场景下的改进方法
-
双阈值策略
- 固定双阈值:设置上下限 λLλL 和 λHλH,能量介于两者时触发重检或协作判决。例如,自适应双阈值在SNR=-10 dB时提升 PdPd 27-39%。
- 动态调整:基于历史能量或SNR权重系数调整阈值,避免固定阈值在NU下的失效。
-
噪声功率建模
- 均匀分布假设:NP-AVE/NP-AVN检测器通过平均似然比消除对噪声功率的依赖,在NU=3 dB时 PdPd 提升40%。
- Huber混合模型:鲁棒估计噪声方差,降低NU对阈值的影响。
-
协作感知优化
- 硬融合准则:OR准则在低SNR和小规模网络中表现最佳,Majority准则适用于大规模网络。
- 增强能量检测:结合协方差矩阵特征值分析,在非同分布噪声下最小化总错误率
五、动态阈值设定策略比较
方法 | 原理 | 优势 | 局限性 |
---|---|---|---|
固定双阈值 | 预设上下限,能量介于区间时触发协作判决 | 复杂度低,适合实时系统 | 需先验NU范围,低SNR时无效 |
BPSO优化阈值 | 二进制粒子群算法动态优化阈值,最小化总感知错误 | 自适应性强,PdPd 提升显著(SNR=3 dB时优化后错误率降50%) | 计算复杂度高,需离线训练 |
隐马尔可夫模型预测 | 结合信道状态预测与动态阈值调整 | 提升吞吐量,适用于时变信道 | 模型训练复杂,需大量历史数据 |
噪声功率实时测量 | 动态根据当前噪声水平调整阈值(如基于FFT的频域能量检测) | 无需先验知识,鲁棒性高 | 实时计算资源需求较大 |
六、未来研究方向
- 多维度融合检测:结合能量、循环平稳特征与深度学习,突破SNR墙限制。
- 低复杂度动态阈值算法:探索轻量级优化算法(如遗传算法)在实时系统中的应用。
- 跨层设计:联合频谱感知与资源分配,优化系统级吞吐量与能耗。
结论
能量检测算法的性能受SNR、噪声不确定性及阈值策略的显著影响。在高SNR场景中,传统ED表现优异;低SNR时需结合协作感知与动态阈值优化。噪声不确定性可通过双阈值、均匀分布建模或机器学习方法缓解。未来研究需进一步平衡算法复杂度与性能,推动认知无线电在5G/6G及物联网中的实际应用。
📚2 运行结果
2.1 不同的N值
2.2 不同的SNR
2.3 不同的噪声不确定性
2.4 不确定噪声和动态阈值比较
2.5 所有案例比较
部分代码:
%% Simulation to plot Probability of Detection (Pd) vs. Probability of False Alarm (Pf)
for m = 1:length(Pf)
i = 0;i2=0;i3=0;i4=0;
for kk=1:10000 % Number of Monte Carlo Simulations
n = randn(1,L); n2 = sqrt(1.01).*randn(1,L);%AWGN noise with mean 0 and variance
%s = sqrt(snr).*randn(1,L); % Real valued Gaussina Primary User Signal
s = sqrt(snr).*bpsk_w;
%s = 1/sqrt(2)*sqrt(snr).*randn(1,L)+randn(1,L);
y = s + n;y2 = s + n2; % Received signal at SU
energy = abs(y).^2; energy2 = abs(y2).^2;% Energy of received signal over N samples
energy_fin =(1/L).*sum(energy);energy_fin2 =(1/L).*sum(energy2); % Test Statistic for the energy detection
thresh(m) = (qfuncinv(Pf(m))./sqrt(L))+ 1; thresh2(m) = (qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02;thresh3(m) = ((qfuncinv(Pf(m))./sqrt(L))+ 1)./1.002;thresh4(m) = ((qfuncinv(Pf(m)).*1.02./sqrt(L))+ 1.02)./1.001;% Theoretical value of Threshold, refer, Sensing Throughput Tradeoff in Cognitive Radio, Y. C. Liang
if(energy_fin >= thresh(m)) % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
i = i+1;
end
if(energy_fin2 >= thresh2(m)) % Check whether the received energy is greater than threshold, if so, increment Pd (Probability of detection) counter by 1
i2 = i2+1;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]董淑雅.认知无线电中宽带频域能量检测算法研究[D].海南大学,2016.
2]虞贵财,罗涛,乐光新.认知无线电系统中协同能量检测算法的性能研究[J].电子与信息学报, 2009(11):5.
[3]吴进波,罗涛,乐光新.认知无线电系统中的两判决门限能量检测算法[J].高技术通讯, 2009, 19(9):4.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取