大佬就别点进来了,适合需要快速水文章的人看。首先说一下这个方向没什么实际意义,就是单纯的水论文。
如果是小白的话可以先看看灰狼、鲸鱼等受欢迎的算法,理解元启发式算法的探索和开发两个阶段。元启发式算法的文章虽然特别多,但是代码结构都大同小异,包括种群初始化,边界控制和位置更新。所以说改进点也集中在这三个地方,种群初始化目前较多的是混沌映射和反向学习,但是我感觉没什么用,只是为了水创新点。边界控制一般都是超过上界回到上界,超过下界回到下界,这就导致不能很好的利用当前解的信息,因此可以考虑将越界的个体回到当前最优解或其它解附近,当然一般作用也很小。最重要的是还是改进个体位置更新方式,这里就不得不提到非线性收敛因子,它对算法的影响还是非常大的。这里灰狼算法为例,简单演示一下这个流程:
首先改收敛因子,我们将原文中的线形收敛因子改成了非线性收敛因子,具体改动和结果如下,我们将这个改进策略命名为RGWO。
可以明显看见,对于函数F1,改进效果还是挺明显的。
然后改变位置更新公式,我们将原文中位置更新公式进行了改动,具体改动和结果如下,我们将这个策略命名为PGWO。