如何快速水一篇论文——改进元启发式算法改进点及文章结构

文章探讨了元启发式算法如灰狼算法的改进方法,主要集中在种群初始化、边界控制和位置更新的优化。提出了使用非线性收敛因子和改变位置更新公式以提升算法性能,通过对比实验展示了改进对函数F1的积极影响。同时建议结合其他算法特性进行融合改进,并详细阐述了论文的结构布局和实验部分的编写要点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大佬就别点进来了,适合需要快速水文章的人看。首先说一下这个方向没什么实际意义,就是单纯的水论文。

如果是小白的话可以先看看灰狼、鲸鱼等受欢迎的算法,理解元启发式算法的探索和开发两个阶段。元启发式算法的文章虽然特别多,但是代码结构都大同小异,包括种群初始化,边界控制和位置更新。所以说改进点也集中在这三个地方,种群初始化目前较多的是混沌映射和反向学习,但是我感觉没什么用,只是为了水创新点。边界控制一般都是超过上界回到上界,超过下界回到下界,这就导致不能很好的利用当前解的信息,因此可以考虑将越界的个体回到当前最优解或其它解附近,当然一般作用也很小。最重要的是还是改进个体位置更新方式,这里就不得不提到非线性收敛因子,它对算法的影响还是非常大的。这里灰狼算法为例,简单演示一下这个流程:

首先改收敛因子,我们将原文中的线形收敛因子改成了非线性收敛因子,具体改动和结果如下,我们将这个改进策略命名为RGWO。

可以明显看见,对于函数F1,改进效果还是挺明显的。

然后改变位置更新公式,我们将原文中位置更新公式进行了改动,具体改动和结果如下,我们将这个策略命名为PGWO。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值