这里以智能优化算法数据处理为例,计算算法运行30次的平均值,标准差,Wilcoxon秩和检验p值,Friedman检验的平均排名,算法包括:包括引用超过五千次的高被引算法(PSO,GSA,GWO,WOA)和最近提出来的高性能算法(AVOA,GTO,DBO,SO),每个算法都是独立的.m文件,方便管理和二次开发,算法具体描述如下:
第一,粒子群优化算法(Particle Swarm Optimization, PSO) 是James Kennedy和Russell Eberhart在1995年受到鸟群觅食行为的规律性启发提出的算法。第二,引力搜索算法(Gravitational Search Algorithm,GSA)是Esmat Rashedi等人在2009年基于万有引力定律和粒子间相互作用提出的算法。第三,灰狼优化算法(Grey Wolf Optimizer,GWO)是 Mirjalili 等人在2014年到了灰狼捕食猎物活动的启发提出来的一种群智能优化算法。第四,鲸鱼优化算法 (Whale Optimization Algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法。第五,非洲秃鹫优化算法(African Vultures Optimization Algorithm,AVOA)由Benyamin Abdollahzadeh等人受非洲秃鹫的觅食和导航行为启发于2021年提出,该算法速度快,求解精度高,广泛应用于单目标优化。人工大猩猩部队优化算法(Artificial gorilla troops optimizer,GTO