基于深度学习的肿瘤辅助诊断系统的设计

该系统采用深度学习模型进行图像分割和特征提取,辅助医生进行肿瘤诊断。核心功能包括基于Encoder-Decoder和ResNet的图像处理,Flask后端支持,Vue前端展示,以及使用ECharts的数据可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目概述


该系统是一个基于深度学习的肿瘤辅助诊断系统,以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。系统包括模型构建、后端架设和前端访问功能,提供图像分割、特征提取、辅助诊断和诊断结果展示等功能。系统运行环境为Python3.6: PyTorch, OpenCV, Flask,Vue, Vue CLI,Node: axios,ElementUI,ECharts,Chrome(内核版本60以上)。

二、系统架构


1.模型构建
该系统使用深度学习模型进行图像分割和特征提取。模型包括Encoder-Decoder模型和ResNet模型。

Encoder-Decoder模型用于图像分割,通过学习训练集中的图像和标签进行训练,实现对图像中肿瘤区域的识别勾画。

ResNet模型用于特征提取,通过学习训练集中的图像和标签进行训练,提取肿瘤区域的特征。

2.后端架设
该系统使用Flask框架进行后端架设,提供图像分割、特征提取、辅助诊断和诊断结果展示等功能。

3.前端访问功能
该系统使用Vue和Vue CLI进行前端访问功能的开发,使用Node、axios、ElementUI和ECharts等工具完成数据传输、界面设计和数据可视化等操作。

三、系统功能详细设计


1.图像分割
(1)系统接收用户上传的肿瘤图像,并将图像进行预处理,使其符合模型输入要求。
(2)系统使用Encoder-Decoder模型对图像进行分割,得到肿瘤区域的轮廓。
(3)系统将轮廓转化为二值图像,并将结果返回给用户。

以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设、工业级部署和前端访问功能。TensorRT、PyTorch 、OpenCV 、Flask、Vue 人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值