气象预测方法分为三种,分别是:
1过程驱动预测方法(procss-based forecasting model),以大气物理先验知识为基础。
2数据驱动预测方法(data-driven forecasting model):将气象资料看作时间序列,基于变化规律和历史趋势,结合卷积神经网络、长短期记忆网络获取预测结果。
3混合预测,包括集成、降尺度、概率预测。
气象场资料分析
观测资料是通过地面检测,卫星遥感得到的真实气象数据,使用时域特性分析其:
1平稳性。弱平稳性是一般的评判标准,指时间序列的均值随时间保持不变,协方差与时间差相关。常使用ADF单位根假设评判平稳性。
2自相关和偏相关。
在一个时间序列中,今天的值与昨天的值之间可能存在一定的相关性,这种相关性可以通过计算自相关系数来量化。自相关函数 (ACF)是一种统计工具,用来衡量一个时间序列在不同滞后期下的自相关程度。ACF图通常会显示随着滞后期增加,自相关系数如何逐渐减少,直至趋近于零。
当控制了中间的所有滞后效应之后,两个时间点的数据之间的相关性就是偏相关性。
观测资料通过数据同化,融合遥感数据和物理模拟数据,得到重分析资料。对于重分析资料,展开空间关联分析,使用Pearson(连续数据,线性关系,序列为正态分布),Spearman(非参数,对异常不敏感,通过秩计算,侧重衡量平均象限依赖性),Kendall(配对,侧重衡量平均似然比依赖性,即非线性依赖性)相关性度量。
最后介绍基于观测和预报资料的预测精度评估,评估参数有:
1平均绝对误差MAE,值对预测误差绝对值取平均,公式如下,
2均方误差MSE。MSE将对MAE的计算改成了平方计算,因此具有可微性(一个函数在某一点处可微,意味着该函数在这点附近的行为可以用一条直线/切线来近似,这条直线反映了函数在这一点的局部变化率)
3均方根误差RMSE,对均方误差开根号。若误差序列符合高斯分布,且序列足够长,RMSE可以比MAE更好的评估误差。
气象预测模式集成
集成建模可以融合不同预测结果,优化结果
1线性集成:最小二乘,单、双目标启发算法
介绍单目标启发算法中的灰狼算法:包围(迭代),狩猎(位置更新),攻击(全局搜索)
2非线性集成:多层感知器,SVR支持向量回归,集成树
气象统计降尺度
1递归深度学习降尺度,通过不停循环迭代,学习关键信息并保存,遗忘次要的信息,有长短期记忆网络,门控循环
2Transformer降尺度,注意力机制Attention作为解码器和编码器的核心
另外,预测存在不确定性,需要描述并评估。