有没有大神给看看,指导一下,万分感谢!
2024-03-20 16:20:42 | INFO | yolox.core.trainer:203 - ---> start train epoch1
2024-03-20 16:20:47 | INFO | yolox.core.trainer:365 - Save weights to ./YOLOX_outputs\yolox_voc_s
100%|##########################################| 1/1 [00:00<00:00, 1.43it/s]
d:\ai\yolox\yolox\evaluators\voc_evaluator.py:108: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ..\torch\csrc\tensor\python_tensor.cpp:85.)
statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples])
2024-03-20 16:20:48 | INFO | yolox.evaluators.voc_evaluator:144 - Evaluate in main process...
Writing sao VOC results file
2024-03-20 16:20:48 | INFO | yolox.core.trainer:195 - Training of experiment is done and the best AP is 0.00
2024-03-20 16:20:48 | ERROR | yolox.core.launch:98 - An error has been caught in function 'launch', process 'MainProcess' (33424), thread 'MainThread' (18140):
Traceback (most recent call last):
File "D:\AI\YOLOX\tools\train.py", line 147, in <module>
launch(
└ <function launch at 0x00000218029676A0>
> File "d:\ai\yolox\yolox\core\launch.py", line 98, in launch
main_func(*args)
│ └ (╒═══════════════════╤═══════════════════════════════════════════════════════════════════════════════════════════════════════...
└ <function main at 0x0000021802967600>
File "D:\AI\YOLOX\tools\train.py", line 127, in main
trainer.train()
│ └ <function Trainer.train at 0x0000021807D0DC60>
└ <yolox.core.trainer.Trainer object at 0x0000021808179E50>
File "d:\ai\yolox\yolox\core\trainer.py", line 76, in train
self.train_in_epoch()
│ └ <function Trainer.train_in_epoch at 0x000002180819B060>
└ <yolox.core.trainer.Trainer object at 0x0000021808179E50>
File "d:\ai\yolox\yolox\core\trainer.py", line 86, in train_in_epoch
self.after_epoch()
│ └ <function Trainer.after_epoch at 0x00000218081E1260>
└ <yolox.core.trainer.Trainer object at 0x0000021808179E50>
File "d:\ai\yolox\yolox\core\trainer.py", line 222, in after_epoch
self.evaluate_and_save_model()
│ └ <function Trainer.evaluate_and_save_model at 0x00000218081E1580>
└ <yolox.core.trainer.Trainer object at 0x0000021808179E50>
File "d:\ai\yolox\yolox\core\trainer.py", line 337, in evaluate_and_save_model
(ap50_95, ap50, summary), predictions = self.exp.eval(
│ │ └ <function Exp.eval at 0x00000218081E0E00>
│ └ ╒═══════════════════╤════════════════════════════════════════════════════════════════════════════════════════════════════════...
└ <yolox.core.trainer.Trainer object at 0x0000021808179E50>
File "d:\ai\yolox\yolox\exp\yolox_base.py", line 354, in eval
return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)
│ │ │ │ │ └ True
│ │ │ │ └ False
│ │ │ └ False
│ │ └ YOLOX(
│ │ (backbone): YOLOPAFPN(
│ │ (backbone): CSPDarknet(
│ │ (stem): Focus(
│ │ (conv): BaseConv(
│ │ (conv): ...
│ └ <function VOCEvaluator.evaluate at 0x00000218081DB2E0>
└ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>
File "d:\ai\yolox\yolox\evaluators\voc_evaluator.py", line 114, in evaluate
eval_results = self.evaluate_prediction(data_list, statistics)
│ │ │ └ tensor([0., 0., 1.], device='cuda:0')
│ │ └ {0: (None, None, None), 1: (None, None, None)}
│ └ <function VOCEvaluator.evaluate_prediction at 0x00000218081DB420>
└ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>
File "d:\ai\yolox\yolox\evaluators\voc_evaluator.py", line 186, in evaluate_prediction
mAP50, mAP70 = self.dataloader.dataset.evaluate_detections(all_boxes, tempdir)
│ │ │ │ │ └ 'C:\\Users\\Dell\\AppData\\Local\\Temp\\tmpxnsvc2zr'
│ │ │ │ └ [[array([], shape=(0, 5), dtype=float32), array([], shape=(0, 5), dtype=float32)]]
│ │ │ └ <function VOCDetection.evaluate_detections at 0x00000218081DBC40>
│ │ └ <yolox.data.datasets.voc.VOCDetection object at 0x000002181E4A9710>
│ └ <torch.utils.data.dataloader.DataLoader object at 0x000002181E4A82D0>
└ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>
File "d:\ai\yolox\yolox\data\datasets\voc.py", line 235, in evaluate_detections
self._write_voc_results_file(all_boxes)
│ │ └ [[array([], shape=(0, 5), dtype=float32), array([], shape=(0, 5), dtype=float32)]]
└ <yolox.data.datasets.voc.VOCDetection object at 0x000002181E4A9710>
File "d:\ai\yolox\yolox\data\datasets\voc.py", line 269, in _write_voc_results_file
if dets == []:
└ array([], shape=(0, 5), dtype=float32)
ValueError: operands could not be broadcast together with shapes (0,5) (0,)