Yolox训练数据集报错

有没有大神给看看,指导一下,万分感谢!

2024-03-20 16:20:42 | INFO     | yolox.core.trainer:203 - ---> start train epoch1
2024-03-20 16:20:47 | INFO     | yolox.core.trainer:365 - Save weights to ./YOLOX_outputs\yolox_voc_s
100%|##########################################| 1/1 [00:00<00:00,  1.43it/s]
d:\ai\yolox\yolox\evaluators\voc_evaluator.py:108: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ..\torch\csrc\tensor\python_tensor.cpp:85.)
  statistics = torch.cuda.FloatTensor([inference_time, nms_time, n_samples])  
2024-03-20 16:20:48 | INFO     | yolox.evaluators.voc_evaluator:144 - Evaluate in main process...
Writing sao VOC results file
2024-03-20 16:20:48 | INFO     | yolox.core.trainer:195 - Training of experiment is done and the best AP is 0.00
2024-03-20 16:20:48 | ERROR    | yolox.core.launch:98 - An error has been caught in function 'launch', process 'MainProcess' (33424), thread 'MainThread' (18140):
Traceback (most recent call last):

  File "D:\AI\YOLOX\tools\train.py", line 147, in <module>
    launch(
    └ <function launch at 0x00000218029676A0>

> File "d:\ai\yolox\yolox\core\launch.py", line 98, in launch
    main_func(*args)
    │          └ (╒═══════════════════╤═══════════════════════════════════════════════════════════════════════════════════════════════════════...
    └ <function main at 0x0000021802967600>

  File "D:\AI\YOLOX\tools\train.py", line 127, in main
    trainer.train()
    │       └ <function Trainer.train at 0x0000021807D0DC60>
    └ <yolox.core.trainer.Trainer object at 0x0000021808179E50>

  File "d:\ai\yolox\yolox\core\trainer.py", line 76, in train
    self.train_in_epoch()
    │    └ <function Trainer.train_in_epoch at 0x000002180819B060>
    └ <yolox.core.trainer.Trainer object at 0x0000021808179E50>

  File "d:\ai\yolox\yolox\core\trainer.py", line 86, in train_in_epoch        
    self.after_epoch()
    │    └ <function Trainer.after_epoch at 0x00000218081E1260>
    └ <yolox.core.trainer.Trainer object at 0x0000021808179E50>

  File "d:\ai\yolox\yolox\core\trainer.py", line 222, in after_epoch
    self.evaluate_and_save_model()
    │    └ <function Trainer.evaluate_and_save_model at 0x00000218081E1580>   
    └ <yolox.core.trainer.Trainer object at 0x0000021808179E50>

  File "d:\ai\yolox\yolox\core\trainer.py", line 337, in evaluate_and_save_model
    (ap50_95, ap50, summary), predictions = self.exp.eval(
                                            │    │   └ <function Exp.eval at 0x00000218081E0E00>
                                            │    └ ╒═══════════════════╤════════════════════════════════════════════════════════════════════════════════════════════════════════...
                                            └ <yolox.core.trainer.Trainer object at 0x0000021808179E50>

  File "d:\ai\yolox\yolox\exp\yolox_base.py", line 354, in eval
    return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)
           │         │        │      │               │                    └ True
           │         │        │      │               └ False
           │         │        │      └ False
           │         │        └ YOLOX(
           │         │            (backbone): YOLOPAFPN(
           │         │              (backbone): CSPDarknet(
           │         │                (stem): Focus(
           │         │                  (conv): BaseConv(
           │         │                    (conv): ...
           │         └ <function VOCEvaluator.evaluate at 0x00000218081DB2E0> 
           └ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>

  File "d:\ai\yolox\yolox\evaluators\voc_evaluator.py", line 114, in evaluate 
    eval_results = self.evaluate_prediction(data_list, statistics)
                   │    │                   │          └ tensor([0., 0., 1.], device='cuda:0')
                   │    │                   └ {0: (None, None, None), 1: (None, None, None)}
                   │    └ <function VOCEvaluator.evaluate_prediction at 0x00000218081DB420>
                   └ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>

  File "d:\ai\yolox\yolox\evaluators\voc_evaluator.py", line 186, in evaluate_prediction
    mAP50, mAP70 = self.dataloader.dataset.evaluate_detections(all_boxes, tempdir)
                   │    │          │       │                   │          └ 'C:\\Users\\Dell\\AppData\\Local\\Temp\\tmpxnsvc2zr'
                   │    │          │       │                   └ [[array([], shape=(0, 5), dtype=float32), array([], shape=(0, 5), dtype=float32)]]
                   │    │          │       └ <function VOCDetection.evaluate_detections at 0x00000218081DBC40>
                   │    │          └ <yolox.data.datasets.voc.VOCDetection object at 0x000002181E4A9710>
                   │    └ <torch.utils.data.dataloader.DataLoader object at 0x000002181E4A82D0>
                   └ <yolox.evaluators.voc_evaluator.VOCEvaluator object at 0x000002181E4AB150>

  File "d:\ai\yolox\yolox\data\datasets\voc.py", line 235, in evaluate_detections
    self._write_voc_results_file(all_boxes)
    │    │                       └ [[array([], shape=(0, 5), dtype=float32), array([], shape=(0, 5), dtype=float32)]]
    └ <yolox.data.datasets.voc.VOCDetection object at 0x000002181E4A9710>

  File "d:\ai\yolox\yolox\data\datasets\voc.py", line 269, in _write_voc_results_file
    if dets == []:
       └ array([], shape=(0, 5), dtype=float32)

ValueError: operands could not be broadcast together with shapes (0,5) (0,) 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值