简单三步 用Yolov5快速训练自己的数据集(新增转换划分脚本)

请添加图片描述


🌟想了解更多YOLO系列算法更多进阶教程欢迎订阅我的专栏🌟

基础不好的同学可以试试看一下我的《目标检测蓝皮书》🚀,里面包含超多目标检测实用知识,想速通目标检测,看这本就对了!

想了解YOLO系列算法进阶教程的同学可以关注这个专栏YOLOv5/v7 进阶实战 | 安卓部署 | PyQt5页面 | 剪枝✂️ | 蒸馏⚗️ | Flask Web部署 | 改进教程,里面包含多种手把手的部署压缩教程,除此之外还有大量的改进~


简单三步 !用自己的数据集快速训练Yolov5模型


  • 44
    点赞
  • 188
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 59
    评论
YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv5使用ultralytics/yolov5,在Windows系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 希望学习Ubuntu上演示的同学,请前往 《YOLOv5(PyTorch)实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793  本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》Ubuntu系统 https://edu.csdn.net/course/detail/30793Windows系统 https://edu.csdn.net/course/detail/30923《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284       
开源神器YOLOv5已经成为了许多科研、工业领域检测任务的首选模型,而我们经常需要基于自己的数据集进行模型训练。本文将简单介绍YOLOv5训练自己数据集的方法。 第一步:安装YOLOv5 首先需要在自己的电脑或服务器上安装YOLOv5。可以通过以下命令获取YOLOv5: ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5 pip install -r requirements.txt ``` 在安装依赖库的过程中可能会出现各种问题,例如需要安装cmake、cuda等,可以参考github的一些安装教程。 第二步:准备数据集YOLOv5训练自己的数据集需要准备如下文件: - 图像:保存在一个文件夹中,文件夹名字可以是任意的。 - 标注文件:包含每张图像中物体的位置信息,通常使用xml格式或者txt格式。 图像和标注文件的命名需保持一致,例如: ``` folder ── 000001.jpg ── 000001.txt ── 000002.jpg ── 000002.txt ... ``` 标注文件格式如下: ``` <class_name> <x_center> <y_center> <width> <height> ``` 其中`<class_name>`是物体的标签,`<x_center> <y_center>`是物体中心点的坐标,`<width> <height>`是物体的宽度和高度。 第三步:修改配置文件 修改YOLOv5中的配置文件,包括yaml文件和python文件。首先根据要训练数据集的数量和类别数修改yaml文件,例如voc.yaml。将nc(数据集中的类别个数)修改为自己需要的数量,并在names项中添加自己的类别名称。 然后修改train.py文件,将--data参数指向yaml文件路径,将--cfg参数指向yolov5s.yaml。 第四步:训练模型 完成上述步骤后,就可以开始训练模型了,可以通过以下命令启动训练过程: ``` python train.py --img 640 --batch 16 --epochs 20 --data path/to/voc.yaml --cfg yolov5s.yaml ``` 其中的`--img`参数指定了输入图像的大小,`--batch`参数指定了批次大小,`--epochs`参数指定了训练的轮数。可以根据自己的需求进行调整。 训练模型需要一定的时间,训练过程中可以通过tensorboard观察模型的训练效果和训练过程中的损失函数变化。 第五步:测试模型 训练完模型后,可以通过以下命令进行模型测试: ``` python detect.py --source ./data/images --weights runs/train/exp/weights/best.pt --conf 0.4 ``` 其中的`--source`参数指定了测试图像的文件路径,`--weights`参数指定了模型权重文件的路径,`--conf`参数指定了置信度的阈值。 最后,通过以上几个步骤,就可以使用YOLOv5训练自己的数据集。当然,训练模型需要足够多的数据量和标注数量,以及对数据集进行一定的扩增,才能获取更好的检测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 59
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值