Spark中Yarn资源调度与任务调度详解

        yarn是大数据中十分重要的一个组件,对于资源的调度和任务调度有着不可或缺的作用。如果难以理解可以类比一下通过zookeeper去实现高可用,今天,我们来具体的聊一聊yarn的资源调度和任务调度的方式。

名词提要与介绍

 1)Application:基于spark的应用程序,包含了Driver程序和集群上的Executor

2)Executor:是在一个WorkNode上为某应用启动的一个进程,该进程负责运行任务,并且将数据存储在内存或者磁盘上。每一个应用都有各自独立的Executors

3)Task:是一个线程对象,是被送到某个Executor上的执行单元

4)DriverProgram:运行main函数并新建SparkContext的程序

5)ClusterManager:在集群上获取资源的外部服务

6)WorkerNode:集群中任何可以运行应用代码的节点

7)Job:包含很多任务的并行计算的task

8)Stage:一个Stage是一组可以并行计算的task。一个stage会被拆分成很多组任务,魅族任务被称为stage

好的,主角们都出场了,下面我来介绍一下具体的过程吧,他们之间的联系我会放在最后,供大家参考

一、资源调度

        Yarn中的资源调度主要分为两种模式,分别为yarn-client模式和yarn-cluster模式,这两个模式在答题构架上是几乎相同的,区别仅仅是Driver端的位置,所以我们先来介绍yarn-client模式,等会儿我们稍微变动下介绍yarn-cl

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值