最短无序连续子数组秒杀算法

这个问题要求找到一个最短的连续子数组,使得当这个子数组被升序排序后,整个数组就变成升序排序的。解决这个问题的关键在于找到需要排序的子数组的左右边界。

算法思路

  1. 找到无序子数组的左右边界
    • 从左到右遍历数组,找到第一个比前一个元素小的位置,记为 left
    • 从右到左遍历数组,找到第一个比后一个元素大的位置,记为 right
    • 如果数组已经是升序的,直接返回 0。
  2. 扩展边界
    • 在 [left, right] 范围内,找到最小值和最大值。
    • 从 left 向左扩展,找到第一个比最小值大的位置,更新 left
    • 从 right 向右扩展,找到第一个比最大值小的位置,更新 right
  3. 返回结果
    • 最终 right - left + 1 就是需要排序的最短子数组的长度。

Java实现

public class Solution {
    public int findUnsortedSubarray(int[] nums) {
        int n = nums.length;
        int left = 0, right = -1; // 初始化left和right
        int max = nums[0], min = nums[n-1];
        
        // 从左到右找右边界
        for (int i = 1; i < n; i++) {
            if (nums[i] < max) {
                right = i;
            } else {
                max = nums[i];
            }
        }
        
        // 从右到左找左边界
        for (int i = n - 2; i >= 0; i--) {
            if (nums[i] > min) {
                left = i;
            } else {
                min = nums[i];
            }
        }
        
        return right - left + 1;
    }
}

代码解释

  • left 和 right 初始化为 0 和 -1,表示初始时没有无序子数组。
  • 从左到右遍历时,max 记录当前最大值,如果当前元素小于 max,说明需要调整 right
  • 从右到左遍历时,min 记录当前最小值,如果当前元素大于 min,说明需要调整 left
  • 最终返回 right - left + 1,即无序子数组的长度。

复杂度分析

  • 时间复杂度:O(n),因为只需要两次线性遍历数组。
  • 空间复杂度:O(1),只使用了常数空间。

简单总结

  • 该算法通过两次线性遍历找到无序子数组的左右边界。
  • 第一次遍历找到右边界,第二次遍历找到左边界。
  • 这种方法高效且易于实现,时间复杂度为线性。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值