这个问题要求找到一个最短的连续子数组,使得当这个子数组被升序排序后,整个数组就变成升序排序的。解决这个问题的关键在于找到需要排序的子数组的左右边界。
算法思路
- 找到无序子数组的左右边界:
- 从左到右遍历数组,找到第一个比前一个元素小的位置,记为
left
。 - 从右到左遍历数组,找到第一个比后一个元素大的位置,记为
right
。 - 如果数组已经是升序的,直接返回 0。
- 从左到右遍历数组,找到第一个比前一个元素小的位置,记为
- 扩展边界:
- 在
[left, right]
范围内,找到最小值和最大值。 - 从
left
向左扩展,找到第一个比最小值大的位置,更新left
。 - 从
right
向右扩展,找到第一个比最大值小的位置,更新right
。
- 在
- 返回结果:
- 最终
right - left + 1
就是需要排序的最短子数组的长度。
- 最终
Java实现
public class Solution {
public int findUnsortedSubarray(int[] nums) {
int n = nums.length;
int left = 0, right = -1; // 初始化left和right
int max = nums[0], min = nums[n-1];
// 从左到右找右边界
for (int i = 1; i < n; i++) {
if (nums[i] < max) {
right = i;
} else {
max = nums[i];
}
}
// 从右到左找左边界
for (int i = n - 2; i >= 0; i--) {
if (nums[i] > min) {
left = i;
} else {
min = nums[i];
}
}
return right - left + 1;
}
}
代码解释
left
和right
初始化为 0 和 -1,表示初始时没有无序子数组。- 从左到右遍历时,
max
记录当前最大值,如果当前元素小于max
,说明需要调整right
。 - 从右到左遍历时,
min
记录当前最小值,如果当前元素大于min
,说明需要调整left
。 - 最终返回
right - left + 1
,即无序子数组的长度。
复杂度分析
- 时间复杂度:O(n),因为只需要两次线性遍历数组。
- 空间复杂度:O(1),只使用了常数空间。
简单总结
- 该算法通过两次线性遍历找到无序子数组的左右边界。
- 第一次遍历找到右边界,第二次遍历找到左边界。
- 这种方法高效且易于实现,时间复杂度为线性。