机器学习算法构建预测糖尿病模型


前言

世界卫生组织近日发布报告称,糖尿病患者的数量正以惊人的速度增长,目前全球每年约有320万人死于糖尿病导致的并发症。本项目旨在通过机器学习算法构建预测糖尿病模型。


一、数据收集

在这里插入图片描述
【1】Pregnancies:怀孕次数
【2】Glucose:葡萄糖
【3】BloodPressure:血压 (mm Hg)
【4】SkinThickness:皮层厚度 (mm)
【5】Insulin:胰岛素 2小时血清胰岛素(mu U / ml
【6】BMI:体重指数 (体重/身高)^2
【7】DiabetesPedigreeFunction:糖尿病谱系功能
【8】Age:年龄 (岁)
【9】Outcome:类标变量 (0或1)

二、模型构建

1.引入库

代码如下(示例):

import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

2.数据加载与探索

首先加载数据集,并对数据进行基本的探索性分析,包括查看数据的基本信息、统计摘要、特征分布等。

代码如下(示例):

# 加载数据
d = pd.read_csv('D:\Anconda\PimaIndiansdiabetes.csv')

# 数据探索
d.head()  # 查看数据的前几行
d.info()  # 查看数据的基本信息,包括列名、非空值数量、数据类型等
d.isnull().sum().sum()  # 检查是否有缺失值
d.shape, d.keys(), type(d)  # 查看数据集的形状、列名和数据类型
d.describe()  # 数值型特征的统计摘要信息
d.groupby('Outcome').size()  # 查看目标变量的分布情况

功能和作用:
-warnings.filterwarnings(‘ignore’):忽略警告,通常在数据分析和模型训练过程中用于屏蔽无关紧要的警告信息。
-导入需要的库和模块,包括 numpy、pandas、matplotlib.pyplot、seaborn 等,用于数据处理、可视化和建模。
-使用 pd.read_csv() 加载数据集,这里假设数据集路径为 ‘D:\Anconda\PimaIndiansdiabetes.csv’。
-使用 d.head() 查看数据集的前几行,以确保数据正确加载。
-使用 d.info() 查看数据集的基本信息,如列名、数据类型和非空值数量。
-使用 d.isnull().sum().sum() 检查数据集是否有缺失值,并统计缺失值的总数。
-使用 d.shape 获取数据集的形状(行数和列数)、d.keys() 获取数据集的列名、type(d) 获取数据集的类型(DataFrame)。
-使用 d.describe() 输出数值型特征的统计摘要信息,包括均值、标准差、最小值、最大值等。
-使用 d.groupby(‘Outcome’).size() 查看目标变量 ‘Outcome’ 的分布情况,这里假设 ‘Outcome’ 是分类标签(例如是否患有糖尿病)。

3.数据可视化分析

通过直方图、散点图、箱线图等方式,对数据进行可视化和深入分析,了解各个特征之间的关系和分布情况。

代码如下(示例):

# 绘制直方图和散点图
d.hist(figsize=(16, 14))
sns.pairplot(d, vars=d.columns, hue='Outcome')  # 绘制特征之间的散点图矩阵,按照Outcome(结果)着色
sns.pairplot(d, vars=d.columns[:-1], hue='Outcome')  # 排除最后一个变量(Outcome)的散点图矩阵
sns.pairplot(d, diag_kind='hist')  # 对角线上为直方图的散点图矩阵
d.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False, figsize=(16,14))  # 绘制箱线图

功能和作用:
-使用 d.hist() 绘制数据集中所有数值型特征的直方图,可以初步了解各个特征的分布情况。
-使用 sns.pairplot() 绘制特征之间的散点图矩阵,通过 hue=‘Outcome’ 参数按照 ‘Outcome’ 列的取值进行着色,帮助分析特征与目标变量之间的关系。
-使用 sns.pairplot() 排除最后一个特征(通常是目标变量),绘制其余特征的散点图矩阵,进一步探索特征之间的相关性。
-使用 sns.pairplot() 中的 diag_kind=‘hist’ 参数,在对角线上绘制直方图,展示每个特征的分布情况。
-使用 d.plot(kind=‘box’) 绘制箱线图,显示数值型特征的五数概括(最小值、第一四分位数、中位数、第三四分位数、最大值),帮助检测数据的异常值和分布情况。

直方图
在这里插入图片描述
在这里插入图片描述
散点图
在这里插入图片描述
在这里插入图片描述
盒图
在这里插入图片描述
在这里插入图片描述

4.数据预处理和特征工程

包括特征选择(利用SelectKBest和卡方检验选择重要特征)、数据标准化等步骤,以便后续模型训练使用。

代码如下(示例):

# 特征选择
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

X = d.iloc[:, 0:8]  # 特征变量
Y = d.iloc[:, 8]  # 目标变量

select_top_4 = SelectKBest(score_func=chi2, k=4)  # 选择排名前4的特征
fit = select_top_4.fit(X, Y)
features = fit.transform(X)
X_features = pd.DataFrame(data=features, columns=['Glucose', 'Insulin', 'BMI', 'Age'])  # 选取的特征变量

# 数据标准化
from sklearn.preprocessing import StandardScaler

rescaledX = StandardScaler().fit_transform(X_features)  # 标准化特征变量
X = pd.DataFrame(data=rescaledX, columns=X_features.columns)

功能和作用:
-使用 SelectKBest 和 chi2 方法进行特征选择,选择与目标变量 ‘Outcome’ 相关性最高的前4个特征。
-使用 StandardScaler 对选取的特征变量进行标准化,确保不同特征之间的数值范围一致,有助于模型的训练和收敛。

5.模型建立和评估

选择了多个分类模型(逻辑回归、朴素贝叶斯、K近邻、决策树、支持向量机),使用交叉验证评估模型性能,并输出平均准确率。

代码如下(示例):

#数据集划分
from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=2019, test_size=0.2)

#模型选择和建立
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

models = []
models.append(("LR", LogisticRegression()))  # 逻辑回归
models.append(("NB", GaussianNB()))  # 高斯朴素贝叶斯
models.append(("KNN", KNeighborsClassifier()))  # K近邻分类
models.append(("DT", DecisionTreeClassifier()))  # 决策树分类
models.append(("SVM", SVC()))  # 支持向量机分类
#模型评估
import warnings

warnings.filterwarnings('ignore')

results = []
names = []
for name, model in models:
    kfold = KFold(n_splits=10)
    cv_result = cross_val_score(
        model, X_train, Y_train, cv=kfold, scoring='accuracy')
    names.append(name)
    results.append(cv_result)
 #输出模型评估结果
for i in range(len(names)):
    print(names[i], results[i].mean())

功能和作用:

-使用 train_test_split() 将数据集划分为训练集(X_train, Y_train)和测试集(X_test, Y_test)。
-初始化并选择多个分类模型,包括逻辑回归、高斯朴素贝叶斯、K近邻、决策树和支持向量机。
-使用交叉验证(KFold 和 cross_val_score)对每个模型进行评估,评估指标为准确率(accuracy)。
-输出各模型在训练集上的交叉验证平均准确率。

6.主成分分析(PCA)和支持向量机(SVM)模型

使用PCA将高维数据降低到二维,然后使用SVM进行分类,并通过混淆矩阵和分类报告评估模型的性能。同时,利用网格搜索优化SVM的超参数。

代码如下(示例):

from sklearn.decomposition import KernelPCA

# 使用KernelPCA进行主成分分析
kpca = KernelPCA(n_components=2, kernel='rbf')
X_train_pca = kpca.fit_transform(X_train)
X_test_pca = kpca.transform(X_test)

# 可视化PCA降维后的数据
plt.figure(figsize=(10, 8))
plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=Y_train, cmap='plasma')
plt.xlabel("First principal component")
plt.ylabel("Second principal component")

# 使用SVM进行分类
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix

classifier = SVC(kernel='rbf')
classifier.fit(X_train_pca, Y_train)

# 在测试集上进行预测并评估模型性能
y_pred = classifier.predict(X_test_pca)
cm = confusion_matrix(Y_test, y_pred)  # 混淆矩阵
print(cm)
print(classification_report(Y_test, y_pred))

# 使用网格搜索优化SVM模型的超参数
from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001]}
grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
grid.fit(X_train_pca, Y_train)

# 输出最优模型的分类报告
grid_predictions = grid.predict(X_test_pca)
print(classification_report(Y_test, grid_predictions))

功能和作用:
-使用 KernelPCA 对特征进行主成分分析(PCA),将高维数据降维到二维。
-使用 plt.scatter() 可视化降维后的数据,展示主成分分析后的数据分布情况。
-使用 SVC(kernel=‘rbf’) 初始化支持向量机分类器,使用径向基核函数进行分类。
-使用 classifier.fit() 在训练集上训练SVM模型。
-使用 classifier.predict() 在测试集上进行预测,并计算混淆矩阵和分类报告评估模型性能。
-使用 GridSearchCV 对SVM模型进行网格搜索,优化超参数 C 和 gamma。
-输出最优模型在测试集上的分类报告,评估优化后模型的性能。

7.结果可视化

使用箱线图展示不同模型的交叉验证结果分布。
代码如下(示例):

# 结果可视化
ax = sns.boxplot(data=results)
ax.set_xticklabels(names)
plt.show()

功能和作用:
-使用 sns.boxplot() 绘制模型在交叉验证中准确率的箱线图,帮助比较不同模型的性能表现。
-使用 ax.set_xticklabels(names) 设置箱线图的 x 轴标签为模型名称,提升图表可读性。
-使用 plt.show() 显示绘制的箱线图。


总结

这段代码展示了一个完整的机器学习项目流程,从数据加载和探索性分析开始,到数据预处理、特征工程、模型选择和评估,最后使用主成分分析和支持向量机进行建模和优化。

  • 56
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值