机器学习调参(详细版)

机器学习调参

 

即使路途艰难,也要坚持前行,因为每一步的努力都将铺就通往梦想的道路。你值得拥有自己向往的生活,勇敢地去追逐吧!

 

目录

机器学习调参

1. 机器学习调参

2. 梯度下降法

 

1)思想简述

 

2)主要步骤

3)学习率

 4)变种

5) 应用领域

6) 总结

3. 梯度下降法在机器学习调参中的应用

 4.示例

5. 总结


 

 

1. 机器学习调参

在机器学习中,调参是一个至关重要的过程,而梯度下降法则是优化算法中常用的一种。

 

在机器学习中,模型的性能很大程度上取决于超参数的选择。超参数是在模型训练之前设置的参数,它们不是通过训练数据学习得到的,而是由我们根据经验或者试验来调整的。调参的目标是找到最佳的超参数组合,以使模型的性能达到最优。

 

2. 梯度下降法

 

梯度下降法是一种常用的优化算法,用于最小化目标函数(损失函数)的值。它的基本思想是沿着目标函数的负梯度方向更新参数,直至达到局部最小值或全局最小值。梯度下降法有多种变体,包括批量梯度下降、随机梯度下降和小批量梯度下降等。

 

梯度下降法是一种常用的优化算法,用于最小化目标函数(损失函数)的值。无论是在机器学习中还是在深度学习中,梯度下降法都扮演着至关重要的角色。

1)思想简述

 

梯度下降法的核心思想很简单:沿着目标函数的负梯度方向更新参数,直至达到局部最小值或全局最小值。简单来说,就是找到函数最陡峭的下坡方向,然后朝着这个方向不断迈步,直到走到谷底。

2)主要步骤

 

1. 初始化参数: 随机选择初始参数值。

  

2. 计算梯度: 使用当前参数值计算目标函数的梯度。

 

3. 更新参数: 沿着梯度的负方向更新参数,以减小目标函数的值。

 

4. 重复迭代: 重复步骤2和步骤3,直至达到停止条件(如达到最大迭代次数、梯度接近于零等)。

 

3)学习率

 

学习率是梯度下降法中的一个重要超参数,用于控制参数更新的步长。过大的学习率可能导致算法震荡或无法收敛,而过小的学习率则会导致收敛速度过慢。因此,选择合适的学习率对算法的性能至关重要。

 

 4)变种

 

梯度下降法有多种变体,包括:

 批量梯度下降(Batch Gradient Descent): 在每次更新参数时,使用全部训练样本的梯度。

 随机梯度下降(Stochastic Gradient Descent): 在每次更新参数时,仅使用一个随机样本的梯度。

 小批量梯度下降(Minibatch Gradient Descent): 在每次更新参数时,使用一个小批量样本的梯度,介于批量梯度下降和随机梯度下降之间。

 

5) 应用领域

 

梯度下降法被广泛应用于机器学习和深度学习中,例如线性回归、逻辑回归、神经网络等模型的训练过程中。

 

6) 总结

 

梯度下降法是一种重要的优化算法,用于最小化目标函数的值。通过沿着梯度的负方向更新参数,我们可以逐步接近目标函数的最优值。在实际应用中,需要选择合适的学习率和停止条件,以确保算法能够有效地收敛到最优解。

 

 

 

3. 梯度下降法在机器学习调参中的应用

 

在机器学习中,我们经常使用梯度下降法来更新模型的参数,以最小化损失函数。调参过程中,我们可以通过调整学习率、迭代次数等超参数来优化梯度下降法的性能。较小的学习率可能导致收敛速度过慢,而较大的学习率可能导致震荡或无法收敛。因此,调参的过程就是要找到合适的超参数值,以使梯度下降法能够有效地优化模型。

 

 4.示例

 

举个简单的例子,假设我们正在训练一个线性回归模型,我们需要调节的超参数包括学习率和迭代次数。我们可以尝试不同的学习率和迭代次数组合,然后使用梯度下降法来更新模型参数,观察模型在验证集上的表现,最终选择表现最好的超参数组合。

4e6a26c075614cdea267f9d1793d390a.png

1)代码展示

#coding=UTF-8
import numpy as np
import matplotlib.pyplot as plt
import sys
X=[] # 放theta的取值的
Y=[] # 放theta对应的y值的
def l(x):#相当损失函数
    return x*x#x^2
def h(x):#梯度
    return 2*x
theta=2#theta初始值2
# C:\Users\t430\AppData\Local\VZip
y=l(theta)#调用损失函数
# f_change上次的y值与本次y值的差
f_change=2#损失变化
f_up=l(theta)#上次损失
Y.append(y)
X.append(theta)
b=0.8#a太大不收敛 相当于a 即步长(学习率)
i=0
print(f_change >1e-10)
while f_change >1e-10:
    theta=theta-b*h(theta)#更新theta
    tmp=l(theta)#theta的平方 本次的y值
    f_change=abs(f_up-tmp)
    f_up=tmp
    X.append(theta)
    Y.append(tmp)
    i=i+1
print(theta)
plt.figure()
plt.plot(X,Y,c="red")
print(X)
X2=np.arange(-2,2,0.1)
Y2=X2**2
plt.plot(X2,Y2,c="green")
plt.show()



 

2)运行结果

2be225cca07f4dd89ba322ef5b459546.png

 

5. 总结

 

机器学习调参是优化模型性能的重要步骤,而梯度下降法则是优化算法中常用的一种。通过调整超参数,并结合梯度下降法来更新模型参数,我们可以找到最优的模型参数组合,从而提高模型的性能和泛化能力。

 

 


 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值