基于机器学习和辐射传输的地表温度模拟方法对比

本文对比了基于物理的SCOPE模型与随机森林(RF)、长期短期记忆(LSTM)两种经验方法在地表温度模拟中的表现。结果表明,SCOPE模型在各种场景下均方根误差约2.0K,但计算成本高;而RF和LSTM在相同地表类型和年份表现良好,RMSE分别约为1.50K和1.70K,但在不同地表类型和年份时精度下降。未来研究可探索结合物理和经验方法的策略。
摘要由CSDN通过智能技术生成

目录

一、研究背景

二、研究方法

三、研究区域

四、模拟结果

五、讨论

六、结论

参考文献


一、研究背景

        地表温度( Land surface temperature, LST) 是农学、水文学和气象学等学科的关键参数, 被广泛应用于各种领域,包括蒸散、气候变化、水文循环、植被监测、城市气候和环境研究等, 是局部尺度到全球尺度模拟地表物理过程的关键参数之一。地表温度是能量收支和水循环等过程中的重要参数。在冠层结构、太阳辐射和气象条件等多种因素影响下, 如何模拟地表温度是很多研究的基础。


研究方法

        模拟方法根据其性质可分为基于物理的方法和基于经验的方法。

        基于物理的方法经过长期的发展,大致可以分为辐射传输模型、几何光学模型、混合模型和计算机模拟模型。SCOPE 模型(Soil Canopy Observation Of Photochemistry And Energy Fluxes)是一个基于辐射传输、微气象学和植物生理学理论构建的土壤-植被-大气传输模型,旨在提供方向冠层顶或大气顶可见光和热红外的反射率、发射亮温和太阳诱导的荧光信号以及能量、水和二氧化碳的模拟。到目前为止, SCOPE 模型已被广泛用于地表遥感正演和反演,特别是在植被监测应用中。本研究使用的是1.70 版本的 SCOPE。下表为SCOPE的输入。

表一 SCOPE 模型输入

        随着机器学习的发展,基于经验的方法在遥感领域也得到了广泛的应用,但在地表温度模拟领域应用较少。随机森林(Random Forest, RF)方法能平均来自每个决策树的输出,以获得最终的分类或回归结果。长期短期记忆(Long Short-term Memory, LSTM)是典型的循环神经网络,非常适合处理时间序列数据集,能保持输入数据之间的依赖

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值