对爬取的公交数据进行分析和可视化可以帮助我们更好地理解公交线路、站点以及运行状态等信息。本文将介绍如何使用Python中的pandas、matplotlib和folium等工具,对爬取的公交数据进行分析和可视化。
1. 数据预处理
在进行数据分析前,需要对爬取到的原始数据进行清洗和预处理,以保证数据质量和准确性。常见的数据预处理包括去重、缺失值处理、异常值处理等。下面以pandas库为例,介绍数据预处理的相关操作。
```python
import pandas as pd
# 读取数据,并去除重复记录
data = pd.read_csv('bus_data.csv')
data.drop_duplicates(inplace=True)
# 处理缺失值和异常值
data.dropna(subset=['start_time', 'end_time'], inplace=True)
data = data[data['duration'] > 0]
```
2. 数据分析
可以从公交线路、站点和客流量等多个角度对公交数据进行分析。下面介绍常见的数据分析方法。
(1) 公交线路分析
对公交线路进行分析,可以了解公交线路的长度、道路密度、停靠站点数量和覆盖范围等信息,有利于优化公交运营方案。
```python
import matplotlib.pyplot as plt
# 统计各个公交线路的站点数
line_station_count = data.groupby('bus_line')['stop_name'].agg('count