SLAM学习计划20230530

基于前期学习状态及成果,结合自身实际情况,制定本计划。

前期成果:(1)对C++语言基本掌握,能看懂代码;(2)对Ubuntu系统下相关操作初步了解,但一曝十寒,那些浅薄的理解可以忽略不计。

前期问题:(1)自身状态不佳,没有重视是根本原因,畏难即摆烂频繁发生。

后期计划:(自2023.06.01起,所有调试均在Ubuntu系统中进行,不在Windows系统下用VS试程序)

06.01—06.15 第四讲完成(包括书本知识及代码调试;由于对Ubuntu系统下各项操作均不熟悉,所以前期适当放慢节奏)

06.15—06.30 第六讲完成

07.01—07.15 第八讲完成

07.16—07.31 第十讲完成

08.01—08.15 十二讲完成

6月15日过后,尽量按照每五天一章的速度进行。考虑到后期难度增加,为防止畏难即摆烂现象的发生,每章最久停留不超十天。争取在九月前完成学习,最后留出十五天弹性。我衷心希望此计划即日后变化,不知道自己争不争气………

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1. 先了解ROS(机器人操作系统)的基本概念和架构。学习ROS的官方文档(http://wiki.ros.org/ROS/Introduction)和ROS入门教程(http://wiki.ros.org/ROS/Tutorials)。 2. 了解SLAM(Simultaneous Localization and Mapping,即同时定位和建图)的基本概念和算法。可以参考SLAM介绍(http://www.cnblogs.com/gaoxiang12/p/SLAM.html)。 3. 学习ROS中常用的SLAM算法,如GMapping、Hector SLAM、Cartographer等。可以参考ROS官方文档中的Navigation Stack(http://wiki.ros.org/navigation)和SLAM相关的Tutorials(http://wiki.ros.org/SLAM/Tutorials)。 4. 掌握使用ROS和SLAM算法构建机器人定位和建图系统的方法。可以参考ROS机器人定位和建图教程(http://wiki.ros.org/robot_pose_ekf/Tutorials)和ROS机器人建图教程(http://wiki.ros.org/gmapping/Tutorials)。 5. 学习如何使用ROS和SLAM算法进行实时定位和建图。可以参考ROS实时定位和建图教程(http://wiki.ros.org/rtabmap_ros/Tutorials)和深入了解Cartographer教程(https://google-cartographer-ros-for-wind.readthedocs.io/en/latest/)。 6. 掌握ROS和SLAM算法的调试和优化技巧。可以参考ROS调试和优化教程(http://wiki.ros.org/ROS/Debugging)和ROS性能优化教程(http://wiki.ros.org/ROS/Performance)。 7. 针对具体应用场景,学习如何使用ROS和SLAM算法进行机器人导航、路径规划和避障等。可以参考ROS导航栈教程(http://wiki.ros.org/navigation/Tutorials)和ROS避障教程(http://wiki.ros.org/obstacle_avoidance/Tutorials)。 8. 不断实践和探索,提高ROS和SLAM算法的应用水平。可以参与ROS社区的开源项目和讨论,积极参加ROS和SLAM算法的相关活动和比赛。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值