【数据结构与算法】七大排序算法(上)
🥕个人主页:开敲🍉
🔥所属专栏:数据结构与算法🍅
🌼文章目录🌼
1. 排序的概念及应用
1.1 排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不断地在内外存之间移动数据的排序。
1.2 排序的应用
1.3 常见排序算法
冒泡排序动图演示:
直接插入排序动图演示:
希尔排序动图演示:
希尔排序本质上还是插入排序,只不过在插入排序的基础上进行了优化。希尔排序在进行直接插入排序前会进行预排序,具体何为预排序下面会讲。
选择排序动图演示:
堆排序动图演示:
快速排序动图演示:
归并排序动图演示:
2. 常见排序算法的实现
2.1 插入排序
基本思想:直接插图排序是一种简单的插入排序法,其基本思路是:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
在实际生活中,我们打扑克牌时就用到了直接插入排序的方法:
2.1.1 直接插入排序
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。
直接插图排序的特性总结:
① 元素集合越接近有序,直接插入排序算法的时间效率越高
② 时间复杂度:O(N^2)
③ 空间复杂度:O(1),它是一种稳定的排序算法
④ 稳定性:稳定
2.1.2 希尔排序
希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。
希尔排序的特性总结:
① 希尔排序是对直接插入排序的优化。
② 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
③ 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定:
2.2 选择排序
基本思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。
2.2.1 直接选择排序
① 在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素
② 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
③ 在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素
直接选择排序特性总结:
① 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
② 时间复杂度:O(N^2)
③ 空间复杂度:O(1)
④ 稳定性:不稳定
2.2.2 堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
(堆排序具体实现在:【数据结构与算法篇】二叉树顺序结构及实现-CSDN博客 中,感兴趣的可以自行学习了解~)
堆排序的特性总结:
① 堆排序使用堆来选数,效率就高了很多
② 时间复杂度:O(N*logN)
③ 空间复杂度:O(1)
④ 稳定性:不稳定