0 引言
在机器学习,尤其是深度学习领域,YOLO(You Only Look Once)作为一个流行的目标检测算法,其训练过程中涉及到的训练集、验证集和测试集各自扮演着不同的角色
1 介绍
-
训练集(Training Set):
- 目的:用于训练模型,即让模型通过大量的数据学习到如何识别和预测目标。
- 过程:在训练过程中,模型会不断地调整其参数(权重和偏置),以最小化损失函数(比如交叉熵损失或均方误差)。这个过程通常涉及到前向传播(计算预测结果)和反向传播(根据损失函数计算梯度并更新参数)。
- 重要性:训练集是模型学习的基础,其质量和数量直接影响模型的性能。
-
验证集(Validation Set):
- 目的:用于模型选择和超参数调整。在训练过程中,验证集帮助我们评估不同模型配置的性能,以选择最佳的模型。
- 过程:在训练的每个阶段(或每个epoch),模型会在验证集上进行评估,以检查其泛化能力。如果模型在验证集上的性能不再提升,或者开始下降,这可能意味着模型开始过拟合。
- 重要性:验证集帮助我们避免过拟合,并选择最佳的模型参数和结构。
-
测试集(Test Set):
- 目的:用于最终评估模型的泛化能力。测试集应该完全独立于训练过程,即在模型训练和验证过程中从未使用过。
- 过程:一旦模型在训练集和验证集上训练完成,并且选择了最佳模型,我们会在测试集上评估模型的性能,以得到模型在未见过的数据上的表现。
- 重要性:测试集提供了模型性能的最终评估,是模型部署前的重要参考。
在实际应用中,通常会将数据集分为这三个部分,以确保模型不仅能够在训练数据上表现良好,也能在新的、未见过的数据上保持较好的性能。这种分割有助于我们更全面地理解和评估模型的能力和局限性。
2 通俗理解
下面这个比喻非常恰当:模型的训练与学习,类似于老师教学生学知识的过程。
1、训练集(train set):用于训练模型以及确定参数。相当于老师教学生知识的过程。
2、验证集(validation set):用于确定网络结构以及调整模型的超参数。相当于月考等小测验,用于学生对学习的查漏补缺。
3、测试集(test set):用于检验模型的泛化能力。相当于大考,上战场一样,真正的去检验学生的学习效果。
参数(parameters)是指由模型通过学习得到的变量,如权重和偏置。
超参数(hyperparameters)是指根据经验进行设定的参数,如迭代次数,隐层的层数,每层神经元的个数,学习率等。
训练集、测试集和验证集的比例
根据吴恩达的视频所述,如果当数据量不是很大的时候(万级别以下)的时候将训练集、验证集以及测试集划分为6:2:2
;若是数据很大,可以将训练集、验证集、测试集比例调整为8:1:1
、或者7:2:1