Python从入门到精通(含安装教程)

Python 是一门高级编程语言,由 Guido van Rossum 于 1991 年开发。它以简洁易读的语法和强大的内置功能深受开发者喜爱。Python 的代码通过缩进来划分代码块,结构清晰,便于维护。拥有丰富的标准库和第三方模块,使其在数据分析、网络开发、人工智能以及自动化脚本等领域得到了广泛应用。其跨平台特性保证了在 Windows、Linux 和 macOS 等系统上的高效运行。近年来,随着数据科学和机器学习的蓬勃发展,Python 已成为科研和开发人员的重要工具,推动着现代技术的不断进步。所以学习Python变得越来越有必要。

1、Python环境搭建

本文以Python3.X为基础,讲解Python语言的基本语法和编程思想。

1.1、Python解析器

Python解析器

Python解析器是用来运行Python代码用的,具体的执行流程是:Python文件->Python解析器->机器语言

下载Python解析器

打开网址:https://www.python.org/downloads/,选择合适的版本下载

图片

安装Python解析器

双击可执⾏行行⽂文件 — 勾选[pip] -- [Next] -- [勾选添加环境变量量] -- [Install],按提示操作即可。

图片

1.2、Python开发IDE

PyCharm介绍

PyCharm 是一款功能强大的 Python IDE,旨在提高开发效率。其主要功能包括:‌

  • 智能代码补全‌:根据上下文智能推荐代码,显著提升编写效率。‌

  • 强大的调试工具‌:内置调试器支持逐行执行代码,帮助开发者轻松定位问题。‌

  • 版本控制集成‌:支持 Git、SVN 等版本控制工具,便于团队协作。‌

  • 虚拟环境支持‌:可轻松创建和管理 Python 虚拟环境,确保项目依赖的隔离性。‌

  • AI 增强功能‌:通过 AI Assistant 提供上下文感知的代码补全、代码生成和错误修正,进一步提升开发效率。

下载PyCharm软件

下载地址:

https://www.jetbrains.com/pycharm/download/#section=windows

可以选择选择合适的版本进行下载

图片

安装PyCharm软件

双击安装包 -- [运⾏行行] -- [允许你应⽤用更更改设备]: [是] -- [Next] -- [选择安装位置] -- [Next] -- [Install] -- [Finish]。

图片

PyCharm的基本使用

  • 新建项目

打开PyCharm -- [Create New Project] -- 选择项⽬根⽬录和解释器版本 -- [Create],即可完成新建一个项目。

图片

  • 新建Python文件

项⽬根⽬录或根目录内部任意位置-- 右键 -- [New] -- [Python File] -- 输⼊文件名 -- [OK]。

图片

  • 写入代码和运行

图片

2、基础语法与数据类型

  • 变量与基本数据类型:整数、浮点数、布尔、字符串。

  • 基本运算符:算术运算、比较运算、逻辑运算。

  • 数据结构:列表、元组、字典、集合,各自特点与常用操作。

具体案例:

# 基本数据类型及操作a = 10b = 3.14s = "Hello, Python!"flag = True
print("整数 a:", a)print("浮点数 b:", b)print("字符串 s:", s)print("布尔 flag:", flag)
# 数据结构示例my_list = [1, 2, 3, 4]my_tuple = (1, 2, 3, 4)my_dict = {"name": "Alice", "age": 25}my_set = {1, 2, 3, 4}
print("列表:", my_list)print("元组:", my_tuple)print("字典:", my_dict)print("集合:", my_set)

3、控制流程与循环

  • 条件判断:if、elif、else 语句。

  • 循环语句:for 循环、while 循环,以及 break、continue 控制循环流程。

  • 列表推导式:利用一行表达式生成列表。

具体案例:

# 条件判断score = 85if score >= 90:    print("优秀")elif score >= 60:    print("及格")else:    print("不及格")
# for 循环示例for i in range(5):    print("数字:", i)
# 列表推导式示例:生成 0-9 的平方squares = [x * x for x in range(10)]print("0到9的平方:", squares)

4、函数与模块

  • 函数定义:如何编写函数、传递参数和返回值。

  • 匿名函数:lambda 表达式的使用。

  • 模块化:如何将代码拆分到不同文件中,使用 import 导入标准库或自定义模块。

具体案例:

def add(x, y):    """返回两个数的和"""    return x + y
print("3 + 5 =", add(3, 5))
# lambda 匿名函数示例multiply = lambda x, y: x * yprint("3 * 5 =", multiply(3, 5))

5、数据结构详解

  • 列表、元组、字典与集合:详细讲解它们的特性、常用方法(如增删查改)。

  • 集合与字典推导式:如何快速构造数据结构。

具体案例:

# 列表操作fruits = ["apple", "banana", "cherry"]fruits.append("date")print("更新后的列表:", fruits)
# 字典操作student = {"name": "Bob", "age": 20}student["grade"] = "A"print("学生信息:", student)
# 集合操作:自动去重nums = [1, 2, 2, 3, 4, 4, 5]unique_nums = set(nums)print("唯一数字集合:", unique_nums)

6、面向对象编程(OOP)

  • 类与对象:定义类、构造方法 __init__。

  • 实例方法与属性:如何操作对象数据。

  • 继承与多态:子类继承父类,重写方法。

  • 封装:私有属性和方法的约定。

具体案例:

class Person:    def __init__(self, name, age):        self.name = name        self.age = age
    def introduce(self):        print(f"我叫{self.name},今年{self.age}岁。")
class Student(Person):    def __init__(self, name, age, student_id):        super().__init__(name, age)        self.student_id = student_id
    def introduce(self):        super().introduce()        print(f"我的学号是{self.student_id}。")
p = Person("Alice", 30)p.introduce()
s = Student("Bob", 20, "S1001")s.introduce()

7、异常处理

  • 基本结构:使用 try...except...finally 捕获和处理异常。

  • 自定义异常:根据需求创建新的异常类型。

具体案例:

try:    result = 10 / 0except ZeroDivisionError as e:    print("捕获到除零错误:", e)finally:    print("异常处理结束")

8、装饰器与生成器

  • 装饰器:介绍如何定义装饰器为函数添加额外功能,如计时、日志记录。

  • 生成器:利用 yield 关键字生成迭代器,适用于大数据或无限序列场景。

具体案例:

import time
def timer(func):    def wrapper(*args, **kwargs):        start = time.time()        result = func(*args, **kwargs)        end = time.time()        print(f"{func.__name__}运行时间: {end - start:.4f}秒")        return result    return wrapper
@timerdef compute_sum(n):    total = 0    for i in range(n):        total += i    return total
print("累加结果:", compute_sum(100000))
# 生成器:斐波那契数列def fibonacci(n):    a, b = 0, 1    count = 0    while count < n:        yield a        a, b = b, a + b        count += 1
print("前10个斐波那契数:", list(fibonacci(10)))

9、文件操作与数据存储

  • 文本与二进制文件:使用 open() 函数及上下文管理器 with 进行文件读写。

  • 常用数据格式:JSON、CSV 的读写操作;介绍使用 json、csv 模块进行数据交换。

  • 数据库连接:简单提及使用 sqlite3 进行数据库操作。

具体案例:

# 写文件with open("example.txt", "w", encoding="utf-8") as f:    f.write("这是一个文件示例,展示如何使用Python进行文件操作。\n")
# 读文件with open("example.txt", "r", encoding="utf-8") as f:    content = f.read()    print("文件内容:\n", content)

10、标准库与第三方库

  • 常用标准库:os(文件与目录操作)、sys(系统参数)、datetime(日期时间处理)、math(数学运算)、random(随机数生成)等。

  • 第三方库:通过 pip 安装常用扩展库,如 NumPy、pandas、Matplotlib、Requests、BeautifulSoup 等,扩展 Python 的功能。

具体案例:

import osimport datetime
print("当前工作目录:", os.getcwd())print("今天的日期:", datetime.date.today())
# 使用pip安装第三方库示例(在命令行中执行)# pip install numpy pandas matplotlib

11、并发与异步编程

  • 多线程与多进程:利用 threading 模块实现多线程,multiprocessing 模块实现多进程,解决 CPU 密集型与 I/O 密集型问题。

  • 异步编程:使用 asyncio 库编写异步代码,适用于高并发网络请求等场景。

多线程案例:

import threading
def worker(num):    print(f"线程 {num} 正在运行")
threads = []for i in range(3):    t = threading.Thread(target=worker, args=(i,))    threads.append(t)    t.start()
for t in threads:    t.join()print("所有线程执行完毕")

异步编程案例:

import asyncio
async def async_task(name, delay):    print(f"任务 {name} 开始")    await asyncio.sleep(delay)    print(f"任务 {name} 完成")    return name
async def main():    tasks = [async_task("A", 2), async_task("B", 1)]    results = await asyncio.gather(*tasks)    print("异步任务结果:", results)
asyncio.run(main())

12、网络编程

  • Socket编程:使用 socket 模块构建简单的 TCP/UDP 客户端和服务器,实现底层网络通信。

  • HTTP请求:利用第三方库 Requests 发起 GET、POST 请求,处理 API 数据。

具体案例:

TCP服务器:

import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)server_socket.bind(('localhost', 8000))server_socket.listen(1)print("服务器启动,等待连接...")
conn, addr = server_socket.accept()print("连接来自:", addr)data = conn.recv(1024)print("收到数据:", data.decode())conn.send("Hello, client!".encode())conn.close()server_socket.close()

Http请求案例:

import requests
response = requests.get("https://api.github.com")print("状态码:", response.status_code)print("响应内容:", response.json())

13、数据科学与机器学习基础

  • NumPy:高性能数值计算库,支持多维数组与矩阵运算。

  • pandas:数据处理与分析工具,便于数据清洗、转换和统计。

  • Matplotlib/Seaborn:数据可视化工具,快速绘制图表。

  • Scikit-learn:机器学习库,提供数据预处理、模型训练、评估等工具。

具体案例:

import numpy as npimport pandas as pdimport matplotlib.pyplot as plt
# 生成随机数据data = np.random.randn(1000)df = pd.DataFrame(data, columns=['数据'])print(df.head())
# 绘制直方图plt.hist(df['数据'], bins=30)plt.title("随机数据分布")plt.xlabel("值")plt.ylabel("频率")plt.show()

14、测试、调试与代码规范

  • 单元测试:利用 unittest 或 pytest 编写自动化测试,确保代码质量。

  • 调试工具:使用 pdb 调试代码、IDE 自带调试功能。

  • 编码规范:遵循 PEP 8 风格指南,使用 flake8、pylint 等工具检查代码风格。

具体案例:

import unittest
def add(a, b):    return a + b
class TestMathFunctions(unittest.TestCase):    def test_add(self):        self.assertEqual(add(2, 3), 5)        self.assertNotEqual(add(2, 2), 5)
if __name__ == '__main__':    unittest.main()

15、项目实战案例

最后通过Python实现一个基于 Flask 的登录案例,通过该示例你可以了解如何使用 Python 构建一个简单的登录系统,包括用户身份验证、会话管理和错误提示。项目结构如下:

mylogin/├── app.py└── templates/    ├── login.html    └── welcome.html

1. 后端代码(app.py)

from flask import Flask, render_template, request, redirect, url_for, session, flash
app = Flask(__name__)app.secret_key = 'your_secret_key'  # 用于会话管理,生产环境中请使用更复杂的密钥
# 模拟的用户数据库(实际项目中应使用数据库存储用户信息)users = {    'admin': 'admin123',    'user1': 'password1'}
@app.route('/', methods=['GET', 'POST'])def login():    """    登录页面路由:    - GET 请求返回登录页面    - POST 请求验证用户提交的用户名和密码    """    if request.method == 'POST':        username = request.form.get('username')        password = request.form.get('password')        # 简单验证用户信息        if username in users and users[username] == password:            session['username'] = username  # 将用户名存入会话,实现登录状态            return redirect(url_for('welcome'))        else:            flash('用户名或密码错误,请重试', 'error')    return render_template('login.html')
@app.route('/welcome')def welcome():    """    欢迎页面:    - 检查用户是否已登录    - 登录成功后显示欢迎信息    """    if 'username' in session:        return render_template('welcome.html', username=session['username'])    else:        return redirect(url_for('login'))
@app.route('/logout')def logout():    """    退出登录,清除会话数据,并重定向到登录页面    """    session.pop('username', None)    flash('您已成功退出登录', 'info')    return redirect(url_for('login'))
if __name__ == '__main__':    app.run(debug=True)

2. 前端页面模板

login.html
<!DOCTYPE html><html><head>    <meta charset="utf-8">    <title>登录系统</title></head><body>    <h1>登录</h1>    <!-- 显示错误或提示信息 -->    {% with messages = get_flashed_messages(with_categories=true) %}      {% if messages %}        <ul>        {% for category, message in messages %}          <li style="color: red;">{{ message }}</li>        {% endfor %}        </ul>      {% endif %}    {% endwith %}    <!-- 登录表单 -->    <form method="post">        <label for="username">用户名:</label>        <input type="text" name="username" id="username" required><br><br>        <label for="password">密码:</label>        <input type="password" name="password" id="password" required><br><br>        <input type="submit" value="登录">    </form></body></html>
welcome.html
<!DOCTYPE html><html><head>    <meta charset="utf-8">    <title>欢迎</title></head><body>    <h1>欢迎,{{ username }}!</h1>    <p>您已成功登录系统。</p>    <a href="{{ url_for('logout') }}">退出登录</a></body></html>

总结

本教程从 Python 的基础语法入手,逐步讲解了数据结构、控制流程、函数、面向对象、异常处理、装饰器、生成器、文件操作、标准库、网络编程、数据科学、并发编程以及测试调试等各个方面。


最后,这里免费分享给大家一套免费的学习资料,包含视频、源码/电子书,希望能帮到那些不满现状,想提升自己却又没有方向的朋友,也可以加我微信一起来学习交流。

① Python方向的学习路线图,清楚各个方向要学什么东西

② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析

③ 100多个Python实战案例,学习不再是只会理论

④ Python漫画教程,手机也能学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值