目录
环境说明:
Python 版本:python 3.13.1
Pycharm 版本:Pycharm Professional 2024.3.2
👉大礼包🎁:Python安装包/pycharm教程免费分享👈
以下是Python和PyCharm详细安装流程。
一、安装Python
以下总共六个步骤,其中1-2步为Python安装包下载指引,4-5步为安装指引,第6步为验证是否安装成功。
第一步:安装包下载页面
进入官网https://www.python.org/,如果是通过百度搜索进入,一定要注意它的搜索结果并不一定是排在最前的,避免点了广告。
根据自己的电脑操作系统选择对应的版本,如果是Windows,直接进入以下网址:https://www.python.org/downloads/windows/
第二步:下载安装包
如果操作系统是64位那就选择64-bit,但是并不一定要选择最新版本,安装包可以选择相对早一点的版本,插件和包的兼容性会更好一些。
第三步:开始安装
安装可以选择自定义路径安装(Customize installation),把下面的两个框框都勾选上。
第四步:进行安装
按照指引进入下一步,选择安装文件夹,开始安装。
第五步:安装成功
安装完成,显示安装成功即可退出安装程序。
第六步:验证是否成功
首先调出CMD:按下Windows键和R键(Win+R):打开“运行”对话框,输入“cmd”按Enter键即可打开CMD窗口。
输入Python,按回车键,出现Python版本信息即为安装成功。
二、安装PyCharm
PyCharm Professional(专业版)是需要付费激活的,有30天试用期,PyCharm Community(社区版)本是可以直接下载使用。以下七个步骤介绍安装过程。
第一步:下载安装包
根据电脑的操作系统选择合适的安装包版本,下载地址:
https://www.jetbrains.com/zh-cn/pycharm/download/other.html
第二步:安装程序
下载安装包后直接进入安装流程,按照安装指引点击下一步即可。
第三步:重启电脑
安装完成后,重新启动电脑。
第四步:创建项目
启动PyCharm并进入界面,创建一个项目。
第五步:设置解释器
设置Python解释器,选择已经安装的Python程序。
第六步:设置中文界面
在设置界面中,找到并点击“Appearance&Behavior”(外观和行为)选项。
然后,在子菜单中选择“System Settings”(系统设置)或“Languages&Regions”(语言和地区),具体取决于你的PyCharm版本。
在这里,你会看到一个语言选择下拉菜单。在语言选择下拉菜单中,找到并选择 “Chinese(Simplified)”(简体中文)选项。
应用更改并重启:确认更改后,系统会提示你重新启动PyCharm以应用更改。点击“Restart”(重启)按钮来确认更改并重启PyCharm。
第七步:测试确认
测试代码,没有报错即可。
三、包管理工具
必要的依赖包
python语言强大之处就是在于开源很多的库,这些库通常被称为依赖包。它们可以帮助我们实现特定的功能。
最新版的Pycharm会自动安装好必要的依赖包。比如Pip是Python的包管理工具,用于安装和管理Python软件包。
如何安装其他依赖包
首先:进入 设置→项目→Python解释器→ 点击如下图所示的加号“+”
搜索需要安装的包,选择需要安装的包,点击“安装软件包”即可。
安装好的包就会出现在包管理列表中
也可以在打开的Terminal(中文:终端)中,你可以直接使用pip命令来安装包。你可以输入以下命令:
pip install requests
以上涉及安装相关的步骤就介绍完了。
下面是常用的Python依赖包。
一、数据处理与科学计算相关的包
-
numpy:提供高效的多维数组操作和数学函数,是许多数据科学和科学计算任务的基础库。
-
pandas:用于数据处理和分析,提供强大的数据结构如DataFrame和 Series,方便数据的读取、清洗、转换和分析。
-
scipy:科学计算库,涵盖优化、线性代数、统计等多个领域的功能,为科学研究和工程计算提供支持。
-
matplotlib:绘制静态、动态和交互式图表,可用于数据可视化,帮助用户更好地理解数据。
-
seaborn:基于matplotlib,提供更美观的统计图表,简化了创建复杂统计图表的过程。
-
statsmodels:专注于统计建模和计量经济学,提供各种统计模型和分析工具。
-
scikit-learn:强大的机器学习库,包含各种算法和工具,适用于分类、回归、聚类等任务。
-
tensorflow:深度学习框架,具有高度的灵活性和可扩展性,广泛应用于图像识别、自然语言处理等领域。
-
pytorch:流行的深度学习框架,以动态计算图和易用性著称,适合研究和开发。
-
xgboost:高效的梯度提升树算法库,在许多数据竞赛中表现出色。
-
dask:用于并行计算和处理大型数据集,提高计算效率。
-
numba:将 Python 代码编译为高效的机器码,显著提高代码的执行速度。
-
sympy:符号计算库,可进行数学公式的推导、化简等操作。
-
pymc3:概率编程库,用于贝叶斯统计建模和推断。
-
arviz:用于可视化和分析贝叶斯模型,帮助用户更好地理解模型结果。
二、网络与数据获取相关的包
-
requests:发送HTTP请求,简单易用,是进行网络数据获取的常用库。
-
beautifulsoup4:解析HTML和XML文档,方便从网页中提取所需信息。
-
scrapy:强大的网络爬虫框架,可用于大规模数据采集。
-
selenium:用于自动化浏览器操作,可模拟用户在浏览器中的行为。
-
httpx:现代的HTTP客户端,支持异步请求等高级功能。
-
aiohttp:异步HTTP客户端和服务器,适用于高并发的网络应用。
-
feedparser:解析 RSS 和 Atom feeds,方便获取新闻和博客等信息源。
-
tweepy:访问Twitter API,用于获取Twitter上的数据。
-
facebook-sdk:与Facebook API交互,可开发与Facebook相关的应用。
-
praw:Reddit API 客户端,方便获取Reddit上的内容。
-
pyquery:类似 jQuery 的 HTML 操作库,简化了对 HTML 文档的查询和修改。
-
lxml:高效的 XML 和 HTML 解析库,性能出色。
-
gevent:基于协程的网络库,提高网络应用的并发性能。
-
twisted:异步网络编程框架,适用于复杂的网络应用开发。
-
urllib:Python 标准库中的网络请求模块,提供基本的网络请求功能。
三、文件处理与数据存储相关的包
-
csv:处理CSV文件,方便读取和写入CSV 格式的数据。
-
pickle:对象序列化和反序列化,可将 Python 对象保存到文件中或从文件中读取。
-
h5py:操作 HDF5 文件,适用于存储大规模科学数据。
-
pymongo:与 MongoDB 数据库交互,方便进行非关系型数据库的操作。
-
sqlalchemy:数据库抽象层,支持多种数据库,简化数据库操作。
-
psycopg2:连接PostgreSQL 数据库,提供对 PostgreSQL 的高效访问。
-
mysql-connector-python:连接 MySQL 数据库,用于 MySQL 数据库的开发。
-
sqlite3:操作 SQLite 数据库,轻量级的数据库解决方案。
-
pyarrow:高效的数据序列化和处理库,提高数据处理效率。
-
feather:快速的跨语言数据存储格式,方便在不同语言之间共享数据。
-
parquet:列式存储格式库,适用于大规模数据分析。
-
openpyxl:操作 Excel 文件,支持读取、写入和修改 Excel 文件。
-
xlrd和xlwt:分别用于读取和写入 Excel 文件,功能较为简单。
-
pdfminer:解析 PDF 文件,提取 PDF 中的文本和其他信息。
-
pyPDF2:另一个处理 PDF 的库,提供不同的功能和接口。
四、自然语言处理相关的包
-
nltk:自然语言处理工具包,提供丰富的语料库和工具,适用于各种NLP任务。
-
spacy:高性能的自然语言处理库,具有快速的处理速度和准确的结果。
-
gensim:主题建模和文档相似性分析,可用于文本挖掘和信息检索。
-
textblob:简单的自然语言处理库,提供基本的文本处理功能。
-
stanza:斯坦福大学的自然语言处理库,支持多种语言的处理。
-
flair:强大的自然语言处理框架,提供先进的 NLP 模型和技术。
-
transformers:用于处理预训练语言模型,如 BERT、GPT 等。
-
jieba:中文分词库,适用于中文文本处理。
-
snowballstemmer:词干提取库,用于提取单词的词干。
-
wordcloud:生成词云,直观地展示文本中的关键词。
-
pycorenlp:连接 Stanford CoreNLP 服务器,利用其强大的 NLP 功能。
-
allennlp:深度学习自然语言处理库,提供各种先进的 NLP 模型和工具。
五、图形图像与多媒体处理相关的包
-
PIL(Pillow):图像处理库,提供基本的图像操作功能,如裁剪、缩放、旋转等。
-
opencv-python:计算机视觉库,广泛应用于图像和视频处理、目标检测等领域。
-
moviepy:视频编辑库,可用于视频剪辑、合成等操作。
-
pydub:音频处理库,支持音频的读取、编辑和转换。
-
pygame:游戏开发库,提供丰富的游戏开发功能。
-
matplotlib-venn:绘制维恩图,用于展示集合之间的关系。
-
plotly:交互式数据可视化库,可创建动态和交互式的图表。
-
bokeh:另一个交互式可视化库,适用于大数据可视化。
-
altair:声明式统计可视化库,以简洁的语法创建美观的统计图表。
-
graphviz:绘制图形和流程图,方便展示数据结构和算法。
-
mayavi:三维可视化库,适用于科学数据的三维可视化。
-
mahotas:计算机视觉和图像处理,提供多种图像处理算法。
-
scikit-image:图像处理算法库,包含各种图像处理和分析工具。
六、测试与调试相关的包
-
pytest:强大的测试框架,具有丰富的功能和灵活的插件体系。
-
unittest:Python 标准库中的测试框架,提供基本的测试功能。
-
nose2:另一个测试框架,具有一些独特的功能和改进。
-
coverage:代码覆盖率工具,帮助评估测试的覆盖程度。
-
pdb:Python 调试器,可在代码执行过程中进行调试。
-
ipdb:增强版的调试器,提供更多功能和便利。
-
sentry-sdk:错误跟踪和监控工具,及时发现和解决应用中的错误。
-
logging:日志记录库,方便记录应用的运行状态和错误信息。
-
flaky:处理不稳定的测试,提高测试的稳定性。
-
mock:用于测试的模拟对象库,方便进行单元测试。
七、其他实用库相关的包
-
tqdm:进度条显示库,在长时间运行的任务中显示进度,提高用户体验。
-
colorama:在终端中输出彩色文本,使输出更加醒目。
-
click:命令行界面创建库,方便创建强大的命令行工具。
-
argparse:Python标准库中的命令行参数解析器,用于处理命令行参数。 cryptography:加密库,提供安全的加密和解密功能。
-
pycryptodome:另一个加密库,功能强大。 schedule:任务调度库,可按计划执行任务。
-
watchdog:文件系统监控库,实时监控文件系统的变化。
-
pyzmq:ZeroMQ 库的 Python 绑定,用于高性能的网络通信。
-
pyinstaller:将Python程序打包成可执行文件,方便分发和部署。
-
cx_Freeze:另一个打包工具,提供不同的打包选项。
-
autopep8:自动格式化 Python 代码,遵循 PEP8 规范。
-
yapf:另一个代码格式化工具,具有不同的格式化风格。
-
bitarray:高效的位数组操作库,节省内存空间。
-
typing:类型提示库,提高代码的可读性和可维护性。
-
enum:枚举类型支持库,方便定义枚举类型。标准库中的命令行参数解析器,用于处理命令行参数。
-
cryptography:加密库,提供安全的加密和解密功能。
-
pycryptodome:另一个加密库,功能强大。
-
schedule:任务调度库,可按计划执行任务。
-
watchdog:文件系统监控库,实时监控文件系统的变化。
-
pyzmq:ZeroMQ 库的 Python 绑定,用于高性能的网络通信。
-
pyinstaller:将Python程序打包成可执行文件,方便分发和部署。
-
cx_Freeze:另一个打包工具,提供不同的打包选项。
-
autopep8:自动格式化 Python 代码,遵循 PEP8 规范。
-
yapf:另一个代码格式化工具,具有不同的格式化风格。
-
bitarray:高效的位数组操作库,节省内存空间。
-
typing:类型提示库,提高代码的可读性和可维护性。
-
enum:枚举类型支持库,方便定义枚举类型。
这里分享Python 50G大礼包,里面还有Python面试真题,里面干货满满,一次全拿走!
01,Python大礼包
02,Python电子书
03,Python面试集锦
04,Python小白必备手册
05,Python安装包
06,数据分析全套资源
这只是冰山一角,想要完整版的小伙伴下图获取~