Python+PyCharm保姆级详细安装步骤

目录

一、安装Python

第一步:安装包下载页面

第二步:下载安装包

第三步:开始安装

第四步:进行安装

第五步:安装成功

第六步:验证是否成功

二、安装PyCharm

第一步:下载安装包

第二步:安装程序

第三步:重启电脑

第四步:创建项目

第五步:设置解释器

第六步:设置中文界面

第七步:测试确认

三、包管理工具


环境说明:

Python 版本:python 3.13.1

Pycharm 版本:Pycharm Professional 2024.3.2

👉大礼包🎁:Python安装包/pycharm教程免费分享👈 

以下是Python和PyCharm详细安装流程。

一、安装Python

以下总共六个步骤,其中1-2步为Python安装包下载指引,4-5步为安装指引,第6步为验证是否安装成功。

第一步:安装包下载页面

进入官网https://www.python.org/,如果是通过百度搜索进入,一定要注意它的搜索结果并不一定是排在最前的,避免点了广告。

图片

根据自己的电脑操作系统选择对应的版本,如果是Windows,直接进入以下网址:https://www.python.org/downloads/windows/

图片

第二步:下载安装包

如果操作系统是64位那就选择64-bit,但是并不一定要选择最新版本,安装包可以选择相对早一点的版本,插件和包的兼容性会更好一些。

图片

第三步:开始安装

安装可以选择自定义路径安装(Customize installation),把下面的两个框框都勾选上。

图片

第四步:进行安装

按照指引进入下一步,选择安装文件夹,开始安装。

图片

第五步:安装成功

安装完成,显示安装成功即可退出安装程序。

图片

第六步:验证是否成功

首先调出CMD:按下Windows键和R键(Win+R‌):打开“运行”对话框,输入“cmd”按Enter键即可打开CMD窗口。‌

图片

输入Python,按回车键,出现Python版本信息即为安装成功。

图片

图片

二、安装PyCharm

PyCharm Professional(专业版)是需要付费激活的,有30天试用期,PyCharm Community(社区版)本是可以直接下载使用。以下七个步骤介绍安装过程。

第一步:下载安装包

根据电脑的操作系统选择合适的安装包版本,下载地址:

https://www.jetbrains.com/zh-cn/pycharm/download/other.html

图片

第二步:安装程序

下载安装包后直接进入安装流程,按照安装指引点击下一步即可。

图片

图片

图片

图片

第三步:重启电脑

安装完成后,重新启动电脑。

图片

第四步:创建项目

启动PyCharm并进入界面,创建一个项目。

图片

第五步:设置解释器

设置Python解释器,选择已经安装的Python程序。

图片

图片

第六步:设置中文界面

在设置界面中,找到并点击“Appearance&Behavior”(外观和行为)选项。

然后,在子菜单中选择“System Settings”(系统设置)或“Languages&Regions”(语言和地区),具体取决于你的PyCharm版本。

在这里,你会看到一个语言选择下拉菜单。在语言选择下拉菜单中,找到并选择 “Chinese(Simplified)”(简体中文)选项。

应用更改并重启‌:确认更改后,系统会提示你重新启动PyCharm以应用更改。点击“Restart”(重启)按钮来确认更改并重启PyCharm。

图片

第七步:测试确认

测试代码,没有报错即可。

图片

三、包管理工具

必要的依赖包

python语言强大之处就是在于开源很多的库,这些库通常被称为依赖包。它们可以帮助我们实现特定的功能。

最新版的Pycharm会自动安装好必要的依赖包。比如Pip是Python的包管理工具,用于安装和管理Python软件包。

图片

如何安装其他依赖包

首先:进入 设置→项目→Python解释器→ 点击如下图所示的加号“+”

图片

搜索需要安装的包,选择需要安装的包,点击“安装软件包”即可。

图片

安装好的包就会出现在包管理列表中

图片

也可以在打开的Terminal(中文:终端)中,你可以直接使用pip命令来安装包。你可以输入以下命令:

pip install requests

图片

以上涉及安装相关的步骤就介绍完了。


下面是常用的Python依赖包。

一、数据处理与科学计算相关的包

  • numpy:提供高效的多维数组操作和数学函数,是许多数据科学和科学计算任务的基础库。

  • pandas:用于数据处理和分析,提供强大的数据结构如DataFrame和 Series,方便数据的读取、清洗、转换和分析。

  • scipy:科学计算库,涵盖优化、线性代数、统计等多个领域的功能,为科学研究和工程计算提供支持。

  • matplotlib:绘制静态、动态和交互式图表,可用于数据可视化,帮助用户更好地理解数据。

  • seaborn:基于matplotlib,提供更美观的统计图表,简化了创建复杂统计图表的过程。

  • statsmodels:专注于统计建模和计量经济学,提供各种统计模型和分析工具。

  • scikit-learn:强大的机器学习库,包含各种算法和工具,适用于分类、回归、聚类等任务。

  • tensorflow:深度学习框架,具有高度的灵活性和可扩展性,广泛应用于图像识别、自然语言处理等领域。

  • pytorch:流行的深度学习框架,以动态计算图和易用性著称,适合研究和开发。

  • xgboost:高效的梯度提升树算法库,在许多数据竞赛中表现出色。

  • dask:用于并行计算和处理大型数据集,提高计算效率。

  • numba:将 Python 代码编译为高效的机器码,显著提高代码的执行速度。 

  • sympy:符号计算库,可进行数学公式的推导、化简等操作。

  • pymc3:概率编程库,用于贝叶斯统计建模和推断。 

  • arviz:用于可视化和分析贝叶斯模型,帮助用户更好地理解模型结果。

二、网络与数据获取相关的包

  • requests:发送HTTP请求,简单易用,是进行网络数据获取的常用库。

  • beautifulsoup4:解析HTML和XML文档,方便从网页中提取所需信息。 

  • scrapy:强大的网络爬虫框架,可用于大规模数据采集。

  • selenium:用于自动化浏览器操作,可模拟用户在浏览器中的行为。 

  • httpx:现代的HTTP客户端,支持异步请求等高级功能。

  • aiohttp:异步HTTP客户端和服务器,适用于高并发的网络应用。

  • feedparser:解析 RSS 和 Atom feeds,方便获取新闻和博客等信息源。 

  • tweepy:访问Twitter API,用于获取Twitter上的数据。

  • facebook-sdk:与Facebook API交互,可开发与Facebook相关的应用。 

  • praw:Reddit API 客户端,方便获取Reddit上的内容。

  • pyquery:类似 jQuery 的 HTML 操作库,简化了对 HTML 文档的查询和修改。

  • lxml:高效的 XML 和 HTML 解析库,性能出色。

  • gevent:基于协程的网络库,提高网络应用的并发性能。

  • twisted:异步网络编程框架,适用于复杂的网络应用开发。

  • urllib:Python 标准库中的网络请求模块,提供基本的网络请求功能。

三、文件处理与数据存储相关的包

  • csv:处理CSV文件,方便读取和写入CSV 格式的数据。

  • pickle:对象序列化和反序列化,可将 Python 对象保存到文件中或从文件中读取。

  • h5py:操作 HDF5 文件,适用于存储大规模科学数据。

  • pymongo:与 MongoDB 数据库交互,方便进行非关系型数据库的操作。 

  • sqlalchemy:数据库抽象层,支持多种数据库,简化数据库操作。

  • psycopg2:连接PostgreSQL 数据库,提供对 PostgreSQL 的高效访问。 

  • mysql-connector-python:连接 MySQL 数据库,用于 MySQL 数据库的开发。 

  • sqlite3:操作 SQLite 数据库,轻量级的数据库解决方案。 

  • pyarrow:高效的数据序列化和处理库,提高数据处理效率。 

  • feather:快速的跨语言数据存储格式,方便在不同语言之间共享数据。

  • parquet:列式存储格式库,适用于大规模数据分析。

  • openpyxl:操作 Excel 文件,支持读取、写入和修改 Excel 文件。

  • xlrd和xlwt:分别用于读取和写入 Excel 文件,功能较为简单。

  • pdfminer:解析 PDF 文件,提取 PDF 中的文本和其他信息。

  • pyPDF2:另一个处理 PDF 的库,提供不同的功能和接口。

四、自然语言处理相关的包

  • nltk:自然语言处理工具包,提供丰富的语料库和工具,适用于各种NLP任务。 

  • spacy:高性能的自然语言处理库,具有快速的处理速度和准确的结果。

  • gensim:主题建模和文档相似性分析,可用于文本挖掘和信息检索。

  • textblob:简单的自然语言处理库,提供基本的文本处理功能。

  • stanza:斯坦福大学的自然语言处理库,支持多种语言的处理。

  • flair:强大的自然语言处理框架,提供先进的 NLP 模型和技术。

  • transformers:用于处理预训练语言模型,如 BERT、GPT 等。 

  • jieba:中文分词库,适用于中文文本处理。

  • snowballstemmer:词干提取库,用于提取单词的词干。

  • wordcloud:生成词云,直观地展示文本中的关键词。

  • pycorenlp:连接 Stanford CoreNLP 服务器,利用其强大的 NLP 功能。 

  • allennlp:深度学习自然语言处理库,提供各种先进的 NLP 模型和工具。

五、图形图像与多媒体处理相关的包

  • PIL(Pillow):图像处理库,提供基本的图像操作功能,如裁剪、缩放、旋转等。 

  • opencv-python:计算机视觉库,广泛应用于图像和视频处理、目标检测等领域。 

  • moviepy:视频编辑库,可用于视频剪辑、合成等操作。 

  • pydub:音频处理库,支持音频的读取、编辑和转换。 

  • pygame:游戏开发库,提供丰富的游戏开发功能。 

  • matplotlib-venn:绘制维恩图,用于展示集合之间的关系。 

  • plotly:交互式数据可视化库,可创建动态和交互式的图表。 

  • bokeh:另一个交互式可视化库,适用于大数据可视化。 

  • altair:声明式统计可视化库,以简洁的语法创建美观的统计图表。 

  • graphviz:绘制图形和流程图,方便展示数据结构和算法。 

  • mayavi:三维可视化库,适用于科学数据的三维可视化。 

  • mahotas:计算机视觉和图像处理,提供多种图像处理算法。

  • scikit-image:图像处理算法库,包含各种图像处理和分析工具。

六、测试与调试相关的包

  • pytest:强大的测试框架,具有丰富的功能和灵活的插件体系。 

  • unittest:Python 标准库中的测试框架,提供基本的测试功能。 

  • nose2:另一个测试框架,具有一些独特的功能和改进。 

  • coverage:代码覆盖率工具,帮助评估测试的覆盖程度。 

  • pdb:Python 调试器,可在代码执行过程中进行调试。 

  • ipdb:增强版的调试器,提供更多功能和便利。 

  • sentry-sdk:错误跟踪和监控工具,及时发现和解决应用中的错误。

  • logging:日志记录库,方便记录应用的运行状态和错误信息。

  • flaky:处理不稳定的测试,提高测试的稳定性。

  • mock:用于测试的模拟对象库,方便进行单元测试。

七、其他实用库相关的包

  • tqdm:进度条显示库,在长时间运行的任务中显示进度,提高用户体验。 

  • colorama:在终端中输出彩色文本,使输出更加醒目。

  • click:命令行界面创建库,方便创建强大的命令行工具。

  • argparse:Python标准库中的命令行参数解析器,用于处理命令行参数。 cryptography:加密库,提供安全的加密和解密功能。

  • pycryptodome:另一个加密库,功能强大。 schedule:任务调度库,可按计划执行任务。

  • watchdog:文件系统监控库,实时监控文件系统的变化。

  • pyzmq:ZeroMQ 库的 Python 绑定,用于高性能的网络通信。 

  • pyinstaller:将Python程序打包成可执行文件,方便分发和部署。 

  • cx_Freeze:另一个打包工具,提供不同的打包选项。

  • autopep8:自动格式化 Python 代码,遵循 PEP8 规范。

  •  yapf:另一个代码格式化工具,具有不同的格式化风格。

  • bitarray:高效的位数组操作库,节省内存空间。

  • typing:类型提示库,提高代码的可读性和可维护性。

  • enum:枚举类型支持库,方便定义枚举类型。标准库中的命令行参数解析器,用于处理命令行参数。 

  • cryptography:加密库,提供安全的加密和解密功能。 

  • pycryptodome:另一个加密库,功能强大。 

  • schedule:任务调度库,可按计划执行任务。 

  • watchdog:文件系统监控库,实时监控文件系统的变化。

  • pyzmq:ZeroMQ 库的 Python 绑定,用于高性能的网络通信。

  • pyinstaller:将Python程序打包成可执行文件,方便分发和部署。 

  • cx_Freeze:另一个打包工具,提供不同的打包选项。

  • autopep8:自动格式化 Python 代码,遵循 PEP8 规范。

  •  yapf:另一个代码格式化工具,具有不同的格式化风格。

  • bitarray:高效的位数组操作库,节省内存空间。

  • typing:类型提示库,提高代码的可读性和可维护性。

  • enum:枚举类型支持库,方便定义枚举类型。


这里分享Python 50G大礼包,里面还有Python面试真题,里面干货满满,一次全拿走!

01,Python大礼包

02,Python电子书

03,Python面试集锦

04,Python小白必备手册

05,Python安装包

06,数据分析全套资源

这只是冰山一角,想要完整版的小伙伴下图获取~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值