map、multimap、set、multiset其底层都是二叉搜索树来实现的,但是二叉搜索树也是有自身的缺陷的,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成为单支树,时间复杂度就会退化为 O(N) ,因此map、set等关联式容器的底层结构对二叉树进行了平衡处理,即采用平衡树来实现。
AVL树的概念
二叉搜索树虽然可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树就会退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
因此,两位俄罗斯的数学家G. M. Adelson-Velsky和E. M. Landis在1962年发现了一种解决上述问题的方法。
当向二叉搜索树中插入新节点后,如果能够保证每一个节点的左右子树高度之差的绝对值不超过1(需要对树中的节点进行调整),既可降低树的高度,从而减少平均搜索长度。
【重点】
一棵AVL树或者空树,或者是具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- 左右子树高度之差(简称平衡因子)的绝对值不能超过1(-1/0/1)
在AVL数中,任何节点的两个子树的高度最大差别为1,所以它也被称为平衡二叉树。
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个节点,其高度可以保持在,搜索时间复杂度。
平衡因子(Balance Factor,简写为bf)
平衡因子(bf):结点的左子树的深度减去右子树的深度。
即:某个节点的平衡因子 = 当前节点的左子树的高度 - 右子树的高度
在AVL树中,所有节点的平衡因子都必须满足:-1<=bf<=1 。
AVL树节点的定义
结构体中包含以下成员变量:
- _left:指向左孩子节点的指针;
- _right:指向右孩子节点的指针;
- _parent:指向父亲节点的指针;
- _kv:存储键值对的pair对象,其中K表示键,V表示值;
- _bf:当前节点的平衡因子,用于衡量左右子树高度差。
template<class K, class V>
//节点的结构体希望在整个作用域中都能自由使用用struct
struct AVLTreeNode
{
//AVL的底层使用三叉链的形式
// 所以每个节点都要有指向他的父亲,左孩子和右孩子的指向
//节点类型为kv模型
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
//节点的值以键值对的形式进行存储
pair<K, V> _kv;
//每一个节点都还要有一个平衡因子
int _bf;
//节点的构造函数
//节点的存储的是键值对
AVLTreeNode(const pair<K, V>& kv)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _kv(kv)
, _bf(0)
{}
};
AVL树的基本操作
AVL树的操作操作基本和二叉查找树一样,AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树可以看成是二叉搜索树。
但是AVL不仅是一棵二叉查找树,它还具有其它的性质。如果我们按照一般的二叉查找树的插入删除方式可能会破坏AVL树的平衡性。
所以就需要做一些特殊的处理:左单旋、右单旋、左右双旋以及右左双旋。
AVL树的插入
AVL树的插入过程可以分为两步:
- 按照二叉搜索树的方式插入新节点
- 调整节点的平衡因子
新节点插入较高左子树的左侧——左左:右单旋
右单旋的具体步骤
- 将父节点的左孩子保存为SubL,将SubL的右孩子保存为SubLR;
- 旋转链接,将SubLR更新为父节点的左孩子,将父节点作为SubL的右孩子;
- 获取父节点的父节点,并根据情况将SubL连接到父节点的父节点的相应位置(更新父亲的三叉链);
- 更新旋转之后节点的平衡因子为0。
右单旋的动画演示
右单旋代码
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
Node* ppnode = parent->_parent;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppnode->_right == parent)
{
ppnode->_right = subL;
}
else
{
ppnode->_left = subL;
}
subL->_parent = ppnode;
}
parent->_bf = subL->_bf = 0;
}
新节点插入较高右子树的右侧——右右:左单旋
左单旋的具体步骤
- 将父节点的右孩子保存为SubR,将SubR的右孩子保存为SubRL;
- 旋转链接,将SubRL更新为父节点的右孩子,将父节点作为SubR的右孩子;
- 获取父节点的父节点,并根据情况将SubR连接到父节点的父节点的相应位置(更新父亲的三叉链);
- 更新旋转之后节点的平衡因子为0。
左单旋的动画演示
左单旋代码
//左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
Node* ppnode = parent->_parent;
//“任然保持 二叉搜索树 左小右大的规则”
//“我”的右子树都比“我”大,比“我”大的可以在我的右边
//所以就让“cur的left”为“cur的parent的”right
//此时仍然保持左小右大的规则
//让“cur”为“cur的parent的parent的孩子”
//判断“parent”与“parent的parent”的相对位置
//还要注意parent是否为root
//让parent的右孩子更新为cur的左孩子
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
//如果是左孩子,那么更新subr为左孩子
//如果parent为根结点【将subr更新为根结点】
if (parent == _root)
{
_root = subR;
_root->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subR;
}
else
{
ppnode->_right = subR;
}
subR->_parent = ppnode;
}
subR->_bf = parent->_bf = 0;
}
新节点插入较高左子树的右侧——左右:先左单旋再右单旋(左右双旋)
左右双旋的两次旋转步骤
- 将父节点的左孩子保存为subL,将subL的右孩子保存为subLR;
- 获取subLR的平衡因子;
- 对parent的左孩子进行左单旋操作;
- 再对parent进行右单旋操作;
- 根据subLR的平衡因子的不同情况,更新subLR、subL和parent的平衡因子
左右旋转的代码
//左右双旋
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
subLR->_bf = 0;
}
else if (bf == -1)
{
subL->_bf = 0;
parent->_bf = 1;
subLR->_bf = 0;
}
else if (bf == 0)
{
subL->_bf = 0;
parent->_bf = 0;
subLR->_bf = 0;
}
else
{
assert(false);
}
}
新节点插入较高右子树的左侧——右左:先右单旋再左单旋(右左双旋)
右左双旋的两次旋转步骤
- 将父节点的右孩子保存为subR,将subR的左孩子保存为subRL;
- 获取subRL的平衡因子;
- 对parent的右孩子进行右单旋操作;
- 再对parent进行左单旋操作;
- 根据subRL的平衡因子的不同情况,更新subRL、subR和parent的平衡因子。
右左旋转的代码
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if (bf == 0)
{
subR->_bf = 0;
subRL->_bf = 0;
parent->_bf = 0;
}
else if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == -1)
{
subR->_bf = 1;
parent->_bf = 0;
subRL->_bf = 0;
}
else
{
assert(false);
}
}
AVL树的验证
AVL树是在二叉搜索树的基础上加上平衡性的限制,因此要验证AVL树,可以分为两步:
验证其为二叉搜索树
如果中序遍历可以得到一个有序的序列,就说明为二叉搜索树。
#include "AVLTree.h"
#include <vector>
int main()
{
int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
AVLTree<int, int> a;
for (auto e : arr)
{
a.insert(make_pair(e, e));
}
a.InOrder();
return 0;
}
验证其为平衡树
- 每一个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
- 节点的平衡因子是否计算正确
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBalance()
{
return _IsBalance(_root);
}
int Height()
{
return _Height(_root);
}
private:
int _Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
else
{
return max(_Height(root->_left), _Height(root->_right)) + 1;
}
}
bool _IsBalance(Node* root)
{
if (root == nullptr)
{
return true;
}
int HeightRight = _Height(root->_right);
int HeightLeft = _Height(root->_left);
if (abs(HeightRight - HeightLeft) >= 2)
{
cout << root->_kv.first << endl;
return false;
}
if (HeightRight - HeightLeft != root->_bf)
{
cout << root->_kv.first << endl;
return false;
}
return _IsBalance(root->_right) && _IsBalance(root->_left);
}
private:
Node* _root = nullptr;
};
AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即。
但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除的时候,有可能一直要让旋转持续到根的位置。
因此:如果需要一种查询且有效的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但是一个结构经常修改,就太不适合。