AVL树的实现

map的文档介绍

set的文档介绍

multimap的文档介绍

multiset的文档介绍

map、multimap、set、multiset其底层都是二叉搜索树来实现的,但是二叉搜索树也是有自身的缺陷的,假如往树中插入的元素有序或者接近有序二叉搜索树就会退化成为单支树,时间复杂度就会退化为 O(N) ,因此map、set等关联式容器的底层结构对二叉树进行了平衡处理,即采用平衡树来实现。

AVL树的概念

二叉搜索树虽然可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树就会退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家G. M. Adelson-Velsky和E. M. Landis在1962年发现了一种解决上述问题的方法。

当向二叉搜索树中插入新节点后,如果能够保证每一个节点的左右子树高度之差的绝对值不超过1(需要对树中的节点进行调整),既可降低树的高度,从而减少平均搜索长度。

【重点】

一棵AVL树或者空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不能超过1(-1/0/1)

在AVL数中,任何节点的两个子树的高度最大差别为1,所以它也被称为平衡二叉树。 

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个节点,其高度可以保持在O\left ( \log_{2} n \right ),搜索时间复杂度O\left ( \log_{2} n \right )

平衡因子(Balance Factor,简写为bf)

平衡因子(bf):结点的左子树的深度减去右子树的深度。

即:某个节点的平衡因子 = 当前节点的左子树的高度 - 右子树的高度

在AVL树中,所有节点的平衡因子都必须满足:-1<=bf<=1 。

 

AVL树节点的定义

结构体中包含以下成员变量:

  • _left:指向左孩子节点的指针;
  • _right:指向右孩子节点的指针;
  • _parent:指向父亲节点的指针;
  • _kv:存储键值对的pair对象,其中K表示键,V表示值;
  • _bf:当前节点的平衡因子,用于衡量左右子树高度差。
template<class K, class V>
//节点的结构体希望在整个作用域中都能自由使用用struct
struct AVLTreeNode
{
	//AVL的底层使用三叉链的形式
	// 所以每个节点都要有指向他的父亲,左孩子和右孩子的指向
	//节点类型为kv模型
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	//节点的值以键值对的形式进行存储
	pair<K, V> _kv;
	//每一个节点都还要有一个平衡因子
	int _bf;

	//节点的构造函数
	//节点的存储的是键值对
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

AVL树的基本操作

AVL树的操作操作基本和二叉查找树一样,AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树可以看成是二叉搜索树。

但是AVL不仅是一棵二叉查找树,它还具有其它的性质。如果我们按照一般的二叉查找树的插入删除方式可能会破坏AVL树的平衡性。

所以就需要做一些特殊的处理:左单旋右单旋左右双旋以及右左双旋

AVL树的插入

AVL树的插入过程可以分为两步:

  • 按照二叉搜索树的方式插入新节点
  • 调整节点的平衡因子

新节点插入较高左子树的左侧——左左:右单旋

右单旋的具体步骤

  • 将父节点的左孩子保存为SubL,将SubL的右孩子保存为SubLR
  • 旋转链接,将SubLR更新为父节点的左孩子,将父节点作为SubL的右孩子;
  • 获取父节点的父节点,并根据情况将SubL连接到父节点的父节点的相应位置(更新父亲的三叉链);
  • 更新旋转之后节点的平衡因子为0。
右单旋的动画演示

右单旋代码
//右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	Node* ppnode = parent->_parent;

	parent->_left = subLR;
	if (subLR)
	{
		subLR->_parent = parent;
	}
	subL->_right = parent;
	parent->_parent = subL;

	if (parent == _root)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		if (ppnode->_right == parent)
		{
			ppnode->_right = subL;
		}
		else
		{
			ppnode->_left = subL;
		}
		subL->_parent = ppnode;
	}
	parent->_bf = subL->_bf = 0;
}

新节点插入较高右子树的右侧——右右:左单旋

左单旋的具体步骤

  • 将父节点的右孩子保存为SubR,将SubR的右孩子保存为SubRL
  • 旋转链接,将SubRL更新为父节点的右孩子,将父节点作为SubR的右孩子;
  • 获取父节点的父节点,并根据情况将SubR连接到父节点的父节点的相应位置(更新父亲的三叉链);
  • 更新旋转之后节点的平衡因子为0。
左单旋的动画演示

左单旋代码
    //左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppnode = parent->_parent;
		//“任然保持 二叉搜索树 左小右大的规则”
		//“我”的右子树都比“我”大,比“我”大的可以在我的右边
		//所以就让“cur的left”为“cur的parent的”right
		//此时仍然保持左小右大的规则
		//让“cur”为“cur的parent的parent的孩子”
			//判断“parent”与“parent的parent”的相对位置
		//还要注意parent是否为root

		//让parent的右孩子更新为cur的左孩子
		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		subR->_left = parent;
		parent->_parent = subR;
		//如果是左孩子,那么更新subr为左孩子

		//如果parent为根结点【将subr更新为根结点】
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}
		subR->_bf = parent->_bf = 0;
	}

新节点插入较高左子树的右侧——左右:先左单旋再右单旋(左右双旋)

左右双旋的两次旋转步骤

  • 将父节点的左孩子保存为subL,将subL的右孩子保存为subLR
  • 获取subLR的平衡因子;
  • 对parent的左孩子进行左单旋操作;
  • 再对parent进行右单旋操作;
  • 根据subLR的平衡因子的不同情况,更新subLRsubL和parent的平衡因子
左右旋转的代码
//左右双旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;
	RotateL(parent->_left);
	RotateR(parent);
	if (bf == 1)
	{
		parent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == -1)
	{
		subL->_bf = 0;
		parent->_bf = 1;
		subLR->_bf = 0;
	}
	else if (bf == 0)
	{
		subL->_bf = 0;
		parent->_bf = 0;
		subLR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

新节点插入较高右子树的左侧——右左:先右单旋再左单旋(右左双旋)

右左双旋的两次旋转步骤

  • 将父节点的右孩子保存为subR,将subR的左孩子保存为subRL
  • 获取subRL的平衡因子;
  • 对parent的右孩子进行右单旋操作;
  • 再对parent进行左单旋操作;
  • 根据subRL的平衡因子的不同情况,更新subRLsubR和parent的平衡因子。
右左旋转的代码
//右左双旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	int bf = subRL->_bf;

	RotateR(parent->_right);
	RotateL(parent);

	if (bf == 0)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == 1)
	{
		parent->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == -1)
	{
		subR->_bf = 1;
		parent->_bf = 0;
		subRL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

AVL树的验证

AVL树是在二叉搜索树的基础上加上平衡性的限制,因此要验证AVL树,可以分为两步:

验证其为二叉搜索树

如果中序遍历可以得到一个有序的序列,就说明为二叉搜索树。

#include "AVLTree.h"
#include <vector>
int main()
{
	int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> a;
	for (auto e : arr)
	{
		a.insert(make_pair(e, e));
	}
	a.InOrder();
	return 0;
}

验证其为平衡树

  • 每一个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
	int Height()
	{
		return _Height(_root);
	}
	
private:
	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}
		else
		{
			return max(_Height(root->_left), _Height(root->_right)) + 1;
		}
	}
	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}

		int HeightRight = _Height(root->_right);
		int HeightLeft = _Height(root->_left);

		if (abs(HeightRight - HeightLeft) >= 2)
		{
			cout << root->_kv.first << endl;
			return false;
		}
		if (HeightRight - HeightLeft != root->_bf)
		{
			cout << root->_kv.first << endl;
			return false;
		}
		return _IsBalance(root->_right) && _IsBalance(root->_left);
	}
private:
	Node* _root = nullptr;
};

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即\log_{2} N

但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除的时候,有可能一直要让旋转持续到根的位置。

因此:如果需要一种查询且有效的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但是一个结构经常修改,就太不适合。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安心学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值