如何用ChatGPT+GEE+ENVI+Python进行高光谱,多光谱成像遥感数据处理?

原文链接:如何用ChatGPT+GEE+ENVI+Python进行高光谱,多光谱成像遥感数据处理?

第一:遥感科学

从摄影侦察到卫星图像

遥感的基本原理

遥感的典型应用

图片

第二:ChatGPT 

ChatGPT可以做什么?

ChatGPT演示使用

ChatGPT的未来

图片

第三:prompt 提示词

Prompt技巧(大几岁)

最好的原则和策略

优质的学术提问prompt

图片

第四:ChatGPT遥感提示词示例

提示词1:遥感科学的基础知识和前沿领域

提示词2:编写一段可以运行的深度学习代码

提示词3:编写可以读取遥感数据的python代码

提示词4:集成chatpgt和GEE的全球卫星影像显示

图片

第五:ChatGPT遥感应用

目标层面(文献综述协助、创意生成、研发方案和任务规划起草)

执行层面(数据处理分析、工作流程优化、报告文章编写、可视化)

认知层面(数据挖掘、新算法、传感器改进建议、人工智能与遥感集成新方法)

图片

第六:ChatGPT、GEE等注册、python、envi等软件安​​​​​​​

图片

第七:遥感影像处理(ENVI+chatgpt)

遥感数据类型和处理流程

预处理技术

图像特征提取

图像分类

多光谱、高光谱分析

Chatgpt辅助下envi遥感数据处理

第八:Python遥感影像处理基础

Python

变量和数据类型

控制结构

功能和模块

文件、包、环境

栅格数据处理

第九:Python与chatgpt集成

遥感影像读取和元数据分析

基本影像处理操作,如裁剪、重采样

变量和数据类型

遥感影像的可视化

第十:GEE 

Javascripe 基础

GEE两种模式客户端与服务端的区别

GEE遥感影像数据集及操做

GEE遥感数据导入导出

GEE 图像分类

第十一:chatgpt与GEE集成

Chatgpt与GEE集成使用示例(NDVI)

Chatgpt与GEE下载数据

Chatgpt与GEE遥感数据预处理

Chatgpt与GEE 图像分类

第十二:高级分析技术(机器学习、深度学习)

机器学习与sciki learn 

数据和算法选择

通用学习流程

遥感机器学习模

第十三:多光谱遥感数据

多光谱遥感;

多光谱遥感的主要卫星数据源及下载方法(哨兵、Landsat、Aster、Modis等)

ChatGPT应用:波段选择的重要性和多光谱数据的解读。

第十四:基于chatgpt和python的多光谱数据分析基础

基于chatgpt和python的多光谱数据预处理方法

基于chatgpt和python的多光谱数据分类方法

基于chatgpt和python多光谱数据重组整理、机器学习模型构建、训练方法

第十五:chatgpt+GEE 多光谱应用案例

干旱指数计算案例

洪水监测案例

城市绿地提取和分析案例

第十六:高光谱遥感
高光谱遥感、光的波长、光谱分辨率

高光谱数据预处理

地物识别与光谱特征

混合像元分解

第十七:chatgpt+python 高光谱数据处理

数据读取与显示

光谱特征提取

混合像元分解

高光谱图像分类

高光谱参量反演

第十八:chatgpt+python 高光谱应用案例

矿物填图案例

农作物分类案例

土壤含水量评估案例

  • 12
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用GEE提取遥感数据光谱特征,指数特征,纹理特征,树高特征并进行融合随机森林分类的代码示例: ```javascript // 导入影像 var s2 = ee.ImageCollection('COPERNICUS/S2_SR') .filterBounds(geometry) .filterDate('2020-01-01', '2020-12-31') .sort('CLOUD_COVERAGE_ASSESSMENT') .first(); // 定义光谱波段 var bands = ['B2', 'B3', 'B4', 'B8', 'B11', 'B12']; // 计算指数 var ndvi = s2.normalizedDifference(['B8', 'B4']); var ndwi = s2.normalizedDifference(['B3', 'B8']); var evi = s2.expression( '(2.5 * (b("B8") - b("B4"))) / (b("B8") + 6 * b("B4") - 7.5 * b("B2") + 1)' ); // 计算纹理特征 var texture = s2.select('B8').glcmTexture(); // 导入高程数据 var dem = ee.Image('USGS/SRTMGL1_003'); // 计算树高 var treeHeight = ee.Image.cat( dem.select('elevation').subtract(s2.select('B11')).rename('treeHeight') ); // 合并特征数据 var features = ee.Image.cat(s2.select(bands), ndvi, ndwi, evi, texture, treeHeight); // 导入训练数据 var trainData = ee.FeatureCollection('users/username/training_data'); // 定义分类器 var classifier = ee.Classifier.randomForest(10); // 训练分类器 var trainedClassifier = classifier.train({ features: features, classProperty: 'class', inputProperties: features.bandNames() }, trainData); // 对影像进行分类 var classified = features.classify(trainedClassifier); // 可视化分类结果 Map.addLayer(classified, {min: 0, max: 3, palette: ['blue', 'green', 'orange', 'red']}, 'Classification'); ``` 需要注意的是,在上述代码中,需要将`username`替换为你的用户名,并且在代码执行前需要先在GEE中准备好训练数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值