资料解读:数据治理 1005 丨数据治理平台与数据运营体系建设方案
详细资料请看本解读文章的最后内容。在数字化时代,数据已成为企业和组织的重要资产,如何高效管理和运用数据成为关键问题。这份数据治理平台与数据运营体系建设方案围绕数据治理展开,涵盖总体解决方案、平台建设方案以及运营实施方案,旨在构建高效、安全、规范的大数据治理管理与运营体系,推动技术赋能商业、服务美好生活。
一、数据治理总体解决方案
(一)数据治理定义与要素
数据治理是对数据资产的管理机制,狭义专注于数据质量,广义涵盖数据全生命周期管理,包括数据采集、清洗、转换、资产目录、标准、质量、安全等多方面。其要素包括明确责任、建立组织、制定数据规范、结合理论实践以及借助专业平台和方法论。
(二)大数据管理典型方案与架构
大数据管理与应用平台融合 AI、图谱技术、大数据、云计算等技术,具备数据整合、智能分析等功能,实现数据资源的整合与价值挖掘。其典型架构包含数据源、数据采集、数据资源中心、数据治理管理、数据应用和统一运维等多个层面,各层面协同工作,保障数据的处理、管理与应用。
(三)数据治理定位与总体方案
数据治理平台在大数据平台中处于核心枢纽地位,负责数据资源及资产的管理与应用控制,串联各能力模块实现数据生产与服务。总体方案利用全数据治理流程,构建数据工厂,实现数据治理的标准化、流程化与组件化,满足多种应用场景,促进数据共享与业务发展。
二、数据治理平台建设方案
(一)平台设计理念
以打造通用数据工厂为目标,遵循标准化生产、自动化生产和精益化管理原则,通过一系列工序实现数据从 “原料” 到 “产品” 的转化。同时,秉持四大治理原则,即元数据前向获取、业务驱动设计、面向对象架构和 TCU 原则,确保数据管理的科学性与规范性;遵循五大治理标准,涵盖数据安全、模型、运营、治理成果和处理等方面,保障平台的高质量运行;实施三大策略,包括实现数据全程管控、全生命周期管理、规范执行、问题监管解决以及引入第三方监管等。
(二)平台总体架构与技术架构
总体架构包含元数据管理、数据标准管理、数据开发调度等多个功能模块,为不同用户群体提供服务,满足行业应用需求。技术架构采用工厂化模式,通过数据生产计划、执行和管理三大子模块,实现数据处理的透明可控,提升开发与运维效率,保障系统稳定发展。
(三)平台功能特性
具备组件化应用特性,提供功能、管控和模板组件,支持自定义扩展,可快速搭建数据生产线。元数据管理功能强大,实现元数据的前向获取、统一管理和一致性保障。数据处理能力多样,支持多种数据处理方式和接口调用。质量管理贯穿数据处理全过程,提供设计、开发、运行阶段的质量监控与优化功能。统一调度实现数据层和应用层任务的高效调度,支持多种调度管理和跨平台调度。
(四)平台应用案例
在多个行业有成功应用。如某运营商大数据体系建设中,参与政企数据管理与运营分析;某公安大数据资源平台构建了大数据能力,赋能公安实战;某 ZX 中心工厂化生产管控平台解决了数据仓库的管理难题;某证券统一调度平台提升了调度效率与数据服务质量;某评价机构大数据工厂提高了数据生产效率。
三、数据治理运营实施方案
(一)运营体系与原则
构建涵盖数据治理组织、标准规范、平台工具、治理活动和管理制度的运营支撑体系。遵循平台建设先行、长期治理运营以及 “1+N” 运营模式等原则,明确平台建设与治理运营的分工与协作关系。
(二)运营总体流程与业务流程
总体流程包括数据准备、规范制定、作业开发、质量监控和数据应用等环节,确保数据从源头到应用的全过程管理。业务流程围绕数据归集、清洗加工、分发调用展开,涉及多委办系统和大数据中心,实现数据的共享与应用。
(三)数据资源归集与基础库建设
数据资源归集有库表、附件、API 接口、文件和流数据等多种方式,经过编制目录、预处理等步骤完成数据接入。基础库建设通过委办局间的沟通协作,明确需求和责任,实现主题库的开发与资源共享。
(四)专题 / 主题应用开发与数据应用开发
整合多委办协作能力,建立从模型构建到应用的一体化体系,实现数据的融合分析与价值挖掘。通过大数据平台构建多维标签体系,支撑各类数据挖掘应用,提升数据价值。
(五)避坑指南与运营案例
指出数据治理建设中常见的问题,如数据管理失控、元数据不一致等,并提出相应的解决方法,包括制定标准规范、强化元数据控制、明确权责等。某市大数据资源中心建设运营案例展示了数据治理在实际项目中的应用,包括数据对接、清洗治理、应用开发等工作,为其他项目提供了参考经验。
本方案从数据治理的理论基础到平台建设,再到实际运营,提供了一套完整的体系框架,对推动各行业的数据管理与应用具有重要的指导意义。通过实施该方案,可有效提升数据质量,实现数据资产的价值最大化,为组织的业务发展和决策提供有力支持。
接下来请您阅读下面的详细资料吧。
篇幅所限,本文只能提供部分资料内容,完整资料请看下面链接