数字智慧方案5808丨智慧港口物联信息平台建设方案(52页PPT)(附下载方式)

篇幅所限,本文只提供部分资料内容,完整资料请看下面链接
https://download.csdn.net/download/2301_78256053/89575457

资料解读:数字智慧方案 5808 丨智慧港口物联信息平台建设方案

详细资料请看本解读文章的最后内容。

在当今全球化经济快速发展的时代,港口作为连接国内外贸易的关键枢纽,其智能化和信息化建设已成为提升综合竞争力的核心要素。智慧港口建设意义重大,不仅对创新驱动、转型发展起到关键推动作用,引领着港口发展的新潮流,更是智慧交通和智慧城市的重要组成部分,对国家可持续发展意义深远。

智慧港口是物联网、互联网、云计算、人工智能等高新技术与港口功能深度融合的产物。它通过全面应用先进信息技术和自动化技术,如 GPS、GIS、RFID、实时监控系统、自动化装卸系统等,实现港口集疏运体系、生产操作、仓库管理等多方面的智能化,达成车、船、人、物与港口各功能系统之间的无缝连接和协同联动,使港口迈向安全、高效、便捷、绿色可持续发展的新形态。

智慧港口具有全面感知、智能决策、自主装卸、全程参与和持续创新参与等显著特征。全面感知借助现场物联网、远程传输网络和数据集成管理,实现现场数据的全面数字化;智能决策基于收集的信息,对复杂问题快速做出有效决策;自主装卸让设备能自主识别装卸对象并高效完成作业;全程参与使港口相关方通过云计算和互联网技术融入统一云平台,优化整合供需;持续创新参与通过相关方的广泛参与和人机交互,让港口具备持续创新和自我完善的能力。

其建设涉及多种关键技术。物联网技术通过各类信息传感设备与互联网结合,实现货物电子标签等应用;云计算技术提供基于互联网的应用与服务,支持港口云计算中心的运行;移动互联网技术通过智能终端获取业务和服务,在分析预测、智能商务等方面发挥作用;大数据技术处理海量数据,用于智能监管和智能商务;人工智能技术实现机器智能,应用于码头生产预演等;系统仿真与预演技术对生产作业进行建模和动态描述;设备智能诊断与评估技术监测设备状态;装卸机器视觉与自主控制技术实现装卸的自动化;港口绿色能源系统推动港口运营的零排放和能源高效利用。

智慧港口的建设目标围绕提高服务可持续性、实现高效和绿色低碳展开。通过构建智能化港口管理系统,减少货物周转时间,提高生产效率,满足客户和船方需求;响应交通运输部 “两型” 港口建设要求,协调经济发展与资源利用、环境保护;提高港口管理透明度,增强社会监督能力;以绿色观念为指导,实现港口与自然环境的和谐发展。

在功能构成上,智慧港口涵盖智慧商务、智慧政务、智慧生产和智慧管理等多个方面。其物联网平台体系架构分为前端传感层、网络通信层、数据中心层和应用服务层,整合港口资源,打造综合物流枢纽港。智能物流业务信息平台为港口企业提供信息服务和交互平台,实现物流服务电子化、网络化等,提高物流服务效率和经济效益。

港内综合管理平台、综合监管服务平台和生产运作平台等各有其独特功能。港内综合管理平台负责物流信息管理、资源管理等;综合监管服务平台对货物、船舶等进行全方位监管;生产运作平台包含多个子系统,如电子车牌识别、垂直装卸系统等,提升港口作业的智能化水平。

智慧港口的建设展望十分广阔。它将提高港口现代物流管理水平,增强港口和相关物流企业的竞争实力。挖掘物联网技术在物流管理供应链中的应用,有助于降低物流成本,提高货物运输效率与安全性。基于物联网技术的港口管理信息系统升级,能提升港口自身竞争力,吸引更多相关方加入,发挥集群优势,抢占供应链份额。

综上所述,智慧港口的实施和建设不仅必要,而且技术可行、经济合理。接下来请您阅读下面的详细资料吧。

资源下载链接为: https://pan.quark.cn/s/ab08c24cda4d 本项目基于 PyTorch 实现了 CSRNet(卷积稀疏表示网络)人群计数模型。CSRNet 是一种高效且精准的人群密度估计方法,尤其适合高密度场景下的人群计数。该模型借助卷积神经网络(CNN)的特性,利用稀疏表示来应对复杂背景和密集人群的挑战。以下将详细介绍 CSRNet 的核心概念、结构及实现过程,并阐述人群计数的重要性。 人群计数在公共场所安全监控、交通管理和大型活动组织等领域极为关键。准确估计人群数量有助于保障安全和优化管理。传统计数方法如人工计数或基于规则的方法效率低且易出错而,深度学习技术的引入,尤其是 CSRNet 这类模型,显著提高了计数的准确性和效率。 CSRNet 的核心在于其深度卷积网络结构和稀疏表示能力。该模型通过多尺度特征提取,适应不同大小的人头。其架构包含多个卷积层,每层后接 Leaky ReLU 激活函数,增强非线性表达能力。此外,CSRNet 引入了空洞卷积(也称 atrous convolution),可在不增加参数数量的情况下扩大感受野,更高效地捕捉大范围信息。具体架构包括:输入层接收预处理后的图像;基础网络通常使用预训练的 VGG16 提取多层次特征;多尺度特征融合通过不同扩张率的空洞卷积获得不同分辨率的特征图;解码器利用反卷积操作将低分辨率特征图恢复至原始尺寸,结合多尺度信息重建上下文;稀疏表示层是 CSRNet 的独特之处,通过稀疏编码和解码,将高维特征转换为低维稀疏表示,降低背景噪声影响,提升人头检测精度;输出层通过 1×1 卷积将特征图转化为人群密度图,再经全局平均池化和全连接层得到最终计数结果。 在实现过程中,需注意以下几点:数据预处理,如缩放、归一化、增强等,以提升模型泛化能力;训练策略,包括数据集划分、学习率调度、损失函数选择(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab@com

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值