节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
基于大模型实践和技术交流,我们写一本书:《大模型实战宝典》(2024版) 正式发布!
今天分享社群同学面试小米NLP算法工程师(暑期实习)面经,喜欢记得收藏、关注、点赞。文末加入我们的技术交流群。
问题1、介绍一下Bert模型。
Bert(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言表示模型。与传统的基于循环神经网络的语言模型不同,Bert利用了Transformer的自注意力机制,能够在处理语言任务时更好地捕捉上下文信息。Bert的预训练过程包括两个阶段:Masked Language Model(MLM)和Next Sentence Prediction(NSP)。通过这两个任务,Bert能够学习到单词之间的语义关系和句子之间的连贯性,从而在各种自然语言处理任务中取得了很好的效果。
问题2、GPT和Bert的区别。
GPT(Generative Pre-trained Transformer)和Bert在架构上有所不同。GPT是一个解码器架构,只使用了Transformer的解码器部分,而Bert则是编码器架构,只使用了Transformer的编码器部分。
在预训练任务上,GPT使用了单向的语言模型任务,即给定前文生成下一个单词,而Bert则利用了双向的语言模型任务,包括了Masked Language Model(MLM)和Next Sentence Prediction(NSP)。
在应用上,由于架构和预训练任务的不同,GPT通常用于生成式任务,如文本生成、对话生成等,而Bert则更适用于各种下游任务的特征提取和Fine-tuning,如文本分类、命名实体识别等。
问题3、介绍一下Roberta,它的改进点在哪。
-
使用了更大的训练数据集,更长的训练时间和更大的批次大小,从而提高了模型的性能。
-
改变了训练过程中的输入表示方式,将句子对之间的间隔用额外的特殊符号表示,从而消除了Next Sentence Prediction任务对模型的限制。
-
使用了动态的词表大小,即在不同训练阶段动态调整词表大小,使得模型能够更好地利用数据集中的低频词。
-
对训练过程中的超参数进行了优化,包括学习率、批次大小等。
问题4、Transformer和LSTM的结构与原理
Transformer是一种基于自注意力机制的架构,由编码器和解码器组成,适用于各种序列到序列的任务。其核心是自注意力机制,可以同时考虑输入序列中所有位置的信息,解决了长距离依赖问题。
LSTM(Long Short-Term Memory)是一种循环神经网络的变体,具有门控机制,可以在处理长序列数据时有效地捕捉长期依赖关系。LSTM包含输入门、遗忘门和输出门,通过控制信息的流动来实现长期记忆和遗忘。
问题5、介绍RLHF技术。
RLHF(Reinforcement Learning from Human Feedback)是一种强化学习技术,旨在通过人类反馈来加速模型训练和优化过程。在RLHF中,模型根据其生成的动作和环境的反馈来调整策略,而不是根据预先定义的奖励函数。这种方法使得模型能够从人类专家的经验中快速学习,适用于各种任务,如游戏、机器人控制等。
问题6、介绍下注意力机制。
注意力机制是一种机制,用于在处理序列数据时动态地给予不同位置的输入不同的权重。在Transformer模型中,注意力机制通过计算查询、键和值之间的关联性来实现,从而在编码器和解码器之间传递信息并捕捉输入序列中的关键信息。自注意力机制允许模型在不同位置上关注不同程度的信息,有助于解决长距离依赖问题。
问题7、寻找将一个单词变为另一个单词所需的最少操作步数,动态规划题。
这是一个经典的动态规划问题,可以采用动态规划算法来解决。首先定义状态dp[i][j]表示将单词A的前i个字符变为单词B的前j个字符所需的最少操作步骤。然后根据以下情况进行状态转移:
如果A的第i个字符和B的第j个字符相同,则不需要操作,即dp[i][j] = dp[i-1][j-1]。
如果A的第i个字符和B的第j个字符不同,则可以进行替换、插入或删除操作,取三者中的最小值并加1,即dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1。
def min_edit_distance(word1, word2):
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j - 1], dp[i][j - 1], dp[i - 1][j]) + 1
return dp[m][n]
word1 = "intention"
word2 = "execution"
print(min_edit_distance(word1, word2)) # Output: 5
问题8、合并链表。
合并两个已排序的链表可以采用递归或迭代的方式来实现。递归的方式相对简单直观,迭代方式则需要借助额外的指针来操作。
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
def merge_two_lists(l1, l2):
dummy = ListNode()
current = dummy
while l1 and l2:
if l1.val < l2.val:
current.next = l1
l1 = l1.next
else:
current.next = l2
l2 = l2.next
current = current.next
current.next = l1 if l1 else l2
return dummy.next
# Example usage:
l1 = ListNode(1, ListNode(2, ListNode(4)))
l2 = ListNode(1, ListNode(3, ListNode(4)))
merged = merge_two_lists(l1, l2)
技术交流&资料
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
成立了大模型面试和技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流