
大模型
文章平均质量分 91
Python算法实战
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
最近大模型面试,有点崩溃了。。。
最近这一两周不少公司已开启春招和实习招聘。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。我们一星球成员分享:最近在面试,面试的岗位是大模型算法岗,记录一下最近的一些面试情况 ,希望可以帮到大家,感觉好难啊。。。原创 2025-05-24 16:29:40 · 563 阅读 · 0 评论 -
上海内推 | 上海算法创新研究院-上海交大联合招收空间智能/具身智能算法实习生
1. 负责空间智能、3D视觉相关研究,包括基于 经典方法、Transformer、MLLM 的三维空间和物体感知、理解与重建;2. 需要在以下至少一个领域具备3个月以上的研究或项目经验:3D视觉、3D重建、具身仿真环境,具身合成数据;最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。1. 计算机、自动化、电子等相关专业的在读本硕博学生,或者相关专业 Gap Year 学生;2. 交大优秀导师带队,年轻且充满活力的团队氛围,与优秀的人一起做有挑战的事;原创 2025-05-24 14:54:00 · 780 阅读 · 0 评论 -
快手二面拷打:训练100B模型要多少显存?
最近这一两周不少公司已开启春招和实习招聘。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。最近星球一成员面试时被问到:训练100B模型要多少显存?这道题看似问的很奇葩,但面试官在考察面试者如何根据模型参数来预估所需要的资源。AI 算法在服务器中运行时,一个常见问题“单张 GPU 能承载多少模型参数?原创 2025-05-10 15:58:11 · 1265 阅读 · 0 评论 -
一文讲透MCP的原理及实践
MCP(Model Context Protocol)是由Anthropic主导发布的开放协议标准,旨在为AI模型与外部工具和数据源提供统一的交互接口。MCP通过标准化协议,解决了AI系统与不同工具和数据源集成时的碎片化问题,提升了系统的可靠性和效率。其架构包括MCP主机、客户端、服务器以及本地和远程资源,支持AI应用在上下文中自主执行任务。MCP的优势在于其生态系统丰富、兼容性强,允许开发者快速构建强大的AI应用,同时确保数据处理的本地化和安全性。通过MCP,AI模型能够智能选择并调用工具,显著提升了复杂原创 2025-05-10 15:52:55 · 895 阅读 · 0 评论 -
面完小红书大模型算法岗,心态崩了。。。
最近这一两周不少公司已开启春招和实习招聘。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。原创 2025-04-12 08:40:34 · 744 阅读 · 0 评论 -
DeepSeek R1 本地训练全流程部署实操指南,手把手教你打通其“任督二脉”
在人工智能的浪潮中,DeepSeek R1 凭借其卓越的性能与潜力,成为众多开发者和研究人员眼中的 “香饽饽”。本地训练作为深入挖掘和优化模型的关键环节,却因各种适配性问题,让不少人望而却步。面对网上那些看似详尽却又总少了关键一环的复现文章,你是否也在苦苦摸索 “本地训练” 的正确打开方式?别担心,今天就为你带来一篇超实用的干货文章,手把手带你打通 DeepSeek R1 本地训练的 “任督二脉”,让训练流程变得简单易懂,轻松上手!喜欢技术交流,欢迎加入。为了解决本地训练的适配性问题,今天挑选Hugging转载 2025-04-12 08:29:27 · 947 阅读 · 0 评论 -
让DeepSeek威力加倍!教你本地搭建知识库
输出结果中,最左边一列应该可以看到如下服务:api、db、nginx、redis、sandbox、ssrf_proxy、weaviate、web、worker。在聊天助手窗口下方的“上下文”栏选择“添加”,就可以调用知识库。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。注意:首先请确保你已经安装了Git和Python,并保持“网络畅通”。Dify的知识库功能十分丰富,更多使用方法请参考推文底部的官方文档。原创 2025-03-30 10:45:45 · 1147 阅读 · 0 评论 -
朋友团队招聘| 阿里通义实验室对话智能团队大模型研究型实习生
阿里巴巴通义实验室,主要负责通义系列大模型研究与产品落地。其中对话智能团队,以大模型研究和应用为中心,以对话为核心交互形态,推进大模型的大规模商业化应用,主要技术包括:(1)对话大模型(2)代码大模型(3)AI Agents等;过去三年发表60+篇国际顶会论文;主要业务场景包括(1)通义晓蜜 (2) 通义星辰 (3) 通义灵码。其中,阿里云智能客服在国内对话式AI市占率第一。原创 2025-03-30 10:40:27 · 958 阅读 · 0 评论 -
百川智能大模型面试题:PPO & GRPO 原理及区别是什么?
通过这个小学考试的比喻,我们逐步从只看绝对分数的朴素思路,演化到 PPO 的完整机制(Critic、Advantage、Clip、Reference Model),再到GRPO的创新思路(用一组输出的平均得分当基线,省去价值函数的繁琐)。以下几点值得再次强调:Critic 的意义:它为每个状态或阶段提供“合理预期”,大幅降低了训练方差;Clip & min 机制:约束策略更新幅度,避免一次考试“爆发”带来的巨幅震荡;原创 2025-03-29 18:09:08 · 1047 阅读 · 0 评论 -
基于新版DeepSeek V3,轻松开发大模型智能体Agent
为了能以兼容openai标准的形式,在中调用国内常用的各种DeepSeek服务源,我们需要基于中的譬如,接入DeepSeek# 示例1:DeepSeek官方api_key='<填入你的key>'# 示例2:火山方舟api_key='<填入你的key>'# 示例1:DeepSeek官方# 这里deepseek-chat对应目前最新的非深度思考模型V3# 示例2:火山方舟'<请填写你在火山方舟控制中创建的推理点id>',原创 2025-03-29 17:53:36 · 1136 阅读 · 0 评论 -
一文讲透八款主流大模型推理框架
当前大模型推理平台/引擎生态各具特色,从企业级高并发服务到本地轻量化部署,从国产硬件优化到前沿编译技术探索,每种方案都有其独到优势。选择合适的推理方案不仅需考虑技术指标,更要结合业务场景、硬件资源与未来扩展规划。未来,随着技术的不断进步和产业协作的加深,大模型推理生态将呈现出更加多元、灵活和高效的局面,为各领域在激烈竞争中抢占先机提供强大支撑。原创 2025-03-22 17:29:39 · 1964 阅读 · 0 评论 -
京东二面:DeepSeek为何要用FP8而不是INT8?
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。随着DeepSeek爆火,面试中也越来越高频出现,因此训练营也更新了DeepSeek系列技术的深入拆解。包括MLA、MTP、专家负载均衡、FP8混合精度训练,Dual-Pipe等关键技术,力求做到全网最硬核的解析~本文介绍 DeepSeek 中大量使用的一种数据编码方式——FP8。原创 2025-03-22 17:15:45 · 1957 阅读 · 0 评论 -
图解 Transformer 和 MoE 的差别
专家混合(MoE)是一种流行的架构,比如最近火爆天的 DeepSeek V3 和 R1 就是这类模型。MoE 使用 experts,它们是前馈网络,但与 Transformer 中的网络相比更小。MoE 具有更多的参数需要加载,但由于每次仅选择部分专家,因此只有一部分参数被激活。挑战 2)某些专家可能会比其他专家处理更多的 token,导致部分专家训练不足。如果某个专家达到上限,输入的 token 就会被传递给下一个最合适的专家。在路由器的前馈输出中添加噪声,使其他专家的 logits 更高。原创 2025-03-09 16:00:03 · 759 阅读 · 0 评论 -
字节大模型岗面试:BF16为什么比FP16更适合大模型训练?
随着DeepSeek爆火,面试中也越来越高频出现,因此训练营也更新了DeepSeek系列技术的深入拆解。包括MLA、MTP、专家负载均衡、FP8混合精度训练,Dual-Pipe等关键技术,力求做到全网最硬核的解析~本篇文章主要对训练 LLM 以及部署应用时的精度问题进行了一些探讨和实践,读过后应该会对常用的浮点数 FP16,FP32,BF16 有一个更好的理解~原创 2025-03-09 14:34:48 · 2277 阅读 · 0 评论 -
美团开源首发INT8无损满血版DeepSeek R1
根据DeepSeek最新发布的技术报告,V3/R1突破性的训练成本控制主要依托FP8精度训练方案。FP8是一种典型的模型量化技术,相较于业界常用的BF16精度,FP8精度通过将数据位宽减半显著降低了单次计算开销,但也会带来一定的精度损失。在实践中,DeepSeek R1采用了混合精度训练机制有效缓解了精度损失问题。由于DeepSeek R1采用FP8精度训练,所以开源的原生权重就是FP8精度。原创 2025-03-09 14:20:17 · 1729 阅读 · 0 评论 -
一文详解如何使用 vLLM 在本地部署 DeepSeek 语言模型
通过以上步骤,你已成功在本地部署了 DeepSeek 模型,并能够通过 vLLM 进行推理。如果在部署过程中遇到问题,请参考 vLLM 官方文档或在相关社区寻求帮助。祝你使用愉快!原创 2025-03-03 22:33:44 · 1424 阅读 · 0 评论 -
面了美团大模型算法,压迫感满满!!!
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。大家好,最近面了美团大模型算法岗(日常实习),bg一般,之前有一段还可以的实习。面试题分享,欢迎与我交流学习。原创 2025-03-03 22:27:57 · 807 阅读 · 0 评论 -
北大DeepSeek使用手册来了,清北是在“神仙打架”吗?
清华之前出了 5 份 DeepSeek 的相关教程,北大近期了也出了两个,做个整理。。。原创 2025-02-28 14:16:09 · 982 阅读 · 0 评论 -
大模型面试官提问:多头注意力(MHA)和多头潜在注意力(MLA)
最近春招和实习已开启了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。。更多实战和面试交流,文末加入我们。原创 2025-02-23 08:49:50 · 1209 阅读 · 0 评论 -
DeepSeek-R1 + RAG搭建本地知识库
最近春招和实习已开启了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。。更多实战和面试交流,文末加入我们。原创 2025-02-23 08:45:49 · 2031 阅读 · 0 评论 -
Deepseek本地部署详细指南!从 Ollama 到个人知识库应用
mbp pro。原创 2025-02-23 08:30:43 · 456 阅读 · 0 评论 -
小米大模型二面,我感觉要废了
原理是类似的,embedding 矩阵的初始化方式是 xavier,方差是 1/根号 d,因此乘以根号 d,可以让 embedding 矩阵的方差是 1,从而加速模型的收敛。举个例子:假如输入的原始句子是"我爱机器学习",我们按最简单的基于字的分词,这个样本的单词长度是 6,也就是 ‘我’ ‘爱’ ‘机’ ‘器’ ‘学’ ‘习’,这六个字。所以更深层的原因是,选择根号 d,可以让输入 softmax 的分布,也就是 Q*K^T 更加趋近一个标准的正态分布,也就是均值为 0,方差为 1 的正态分布。原创 2025-02-19 23:12:42 · 1030 阅读 · 0 评论 -
大模型 RLHF 夺命连环17问,答错直接挂!
对于目前很火的Deepseek,最近有准备LLM面试的学员问需要重点掌握哪些东西,给大家的建议是这块最重要的是deepseek v3和r1的技术报告,建议大家去精读一下,其中MLA注意力,MTP,GRPO,冷启动数据,这些是重点。作为大模型对齐人类价值观的核心技术,RLHF 不仅决定了模型的"情商",更是面试中高频出现的必考点——如何设计奖励函数?针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。使模型生成更安全、有用、符合伦理的文本。原创 2025-02-19 23:07:57 · 1018 阅读 · 0 评论 -
一波三折,终于拿到了阿里算法岗Offer了
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。bg 211本 985硕,pub1A 一作中稿1A一作1A三作在投,一篇A会应该是通义这边的门槛。原创 2025-02-16 21:26:24 · 417 阅读 · 0 评论 -
绝了!Cline+DeepSeek 让 VsCode 秒变编程神器!
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。你是否幻想过,有一天编程不再是枯燥地敲击键盘,而是如同与一位智慧伙伴轻松对话,就能让创意代码如灵动音符般流淌?今天,借助Cline与DeepSeek,在VsCode中带你实现自动化编程的奇妙旅程。原创 2025-02-16 21:23:34 · 681 阅读 · 0 评论 -
DeepSeek R1 + 个人知识库,直接起飞!
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。DeepSeek终究还是没有扛住,越来越“难用”了:连续问到第二个问题就频繁地提醒“服务器繁忙,请稍后再试”,刷新也救不回来。我又不死心的去检查了一遍DeepSeek的状态页面,不出意外的一片大红。全网都在寻找DeepSeek官方的平替,其中是比较推荐的一个。原创 2025-02-12 21:41:32 · 1339 阅读 · 0 评论 -
DeepSeek接入Word与Excel,实现办公自动化,这也太猛了!
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。今天跟大家分享下我们如何安装插件,将 DeepSeek嵌入到Excel表格,能够直接操作Excel,大大提升办公效率。原创 2025-02-12 21:28:23 · 1290 阅读 · 0 评论 -
DeepSeek+AnythingLLM本地化部署,打造个人专属智能助手
最近已有不少大厂开启春招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。在当今信息爆炸的时代,个人知识管理变得尤为重要。通过本地化部署 DeepSeek 模型,并结合 AnythingLLM,我们可以快速构建属于自己的 AI 驱动知识库,实现高效的信息管理和智能化的知识检索。本地化部署知识库保障我们个人资料不被外泄,结合大模型打造我们专属AI问答系统。原创 2025-02-09 22:43:24 · 1430 阅读 · 0 评论 -
清华大学DeepSeek使用手册,长达104页!(附PPT下载)
从避免AI幻觉的小窍门,到设计出色提示语的秘籍,每一页都凝聚着干货知识,让用户能够直接上手操作,快速掌握DeepSeek的精髓。这份文档不仅为用户提供了关于DeepSeek的全面知识,还体现了中国科技在人工智能领域的快速发展。《DeepSeek:从入门到精通》以通俗易懂的方式,全面介绍了DeepSeek的使用方法,为用户提供了极具价值的指导。这份文档内容丰富,篇幅长达104页,涵盖了众多实用技巧。原创 2025-02-09 22:20:43 · 5860 阅读 · 0 评论 -
DeepSeek 接入 PyCharm,轻松助力编程
电脑没有大显存GPU的朋友,推荐安装1.5b尺寸,这版尺寸普通电脑无GPU的都能流畅运行,延时几乎在1-2秒,更为关键的是,DeepSeek-r1之所以爆出圈有一个重要原因,小尺寸模型回答质量也很高,即便1.5b如此小的参数尺寸亦如此。大模型在本地搭建,除了能够方便个人知识库管理,详见上一篇介绍,还能提效编程学习,比如Python,Java等,学编程就像学做事的思路和逻辑,挺重要也很有意思。,安装Pycharm社区版,完全免费,下载地址在我的公众号后台回复:Pycharm,即可获取。原创 2025-02-04 15:36:38 · 4661 阅读 · 4 评论 -
《大模型面试宝典》(2025版) 正式发布!
大部分人可能想不到,2025年春节假期,大模型圈子竟然会这么热闹。DeepSeek 正式开源了 DeepSeek-R1,在数学、代码和自然语言推理等任务上比肩 OpenAI o1 正式版。这位来自「神秘东方力量」DeepSeek 算是彻底破圈,火遍大江南北,火到人尽皆知。经历了过去两年的狂飙,国内大模型已经在多个垂直赛道中强势崛起,跨过了护城河,已发布的模型超过200个,相关应用产品不计其数。原创 2025-02-04 15:34:12 · 1615 阅读 · 0 评论 -
面试官提问:Transformer为什么使用多头注意力机制?
最近已有不少大厂已停止秋招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。“线性变换”是机器学习中针对数据常用的变换方式,通过线性变换可以将数据进行降维、解耦、筛选精炼等操作。而 Transformer 中的“线性变换”有着十分独特且重要的意义,它是导致 Multi-Head Attention 机制得以成功运行的根基。原创 2025-02-03 23:35:19 · 766 阅读 · 0 评论 -
使用 Lora进行微调DeepSeek大模型
最近已有不少大厂已停止秋招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。现存在的大模型已经很完善了,但在特殊场景下,他们的完成效果并不理想,也存在很多禁忌。主要体现在以下方面:1、由于不可抗原因,对输出内容限制,对敏感内容禁止输出。2、达不到理想的回复效果,忠实性不太理想,会天马行空。3、想对产品做推广回复,在回复中要忠于产品,推广产品。原创 2025-02-03 23:32:49 · 8399 阅读 · 11 评论 -
Llama 3.3 开源!一文讲透模型推理、模型微调全流程
最近已有不少大厂已停止秋招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。原创 2024-12-29 18:54:00 · 1165 阅读 · 0 评论 -
【大模型】开源向量数据库性能对比: Milvus, Chroma, Qdrant
Qdrant:优点:中规中矩,Qps 相对较高、延迟相对较低。在CPU和磁盘IO方面的利用率较高,能够在处理高负载时提供较好的性能。缺点:在大数据集的加载时间和总体检索精度上略逊于 Milvus,适合对过滤查询有需求但不追求极端性能的场景。对CPU和内存的需求较大,尤其在高并发和复杂查询时可能会出现较高的资源消耗,导致系统负载上升。Chroma:优点:对于较小的数据集,Chroma 更容易上手和集成。对CPU的依赖较低,更多依赖内存来处理大规模数据。缺点。原创 2024-12-29 18:40:50 · 5036 阅读 · 0 评论 -
腾讯开源混元DiT文生图模型,消费级单卡可推理
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。混元DiT是一个基于Diffusion transformer的文本到图像生成模型,此模型具有中英文细粒度理解能力。为了构建混元DiT,我们精心设计了Transformer结构、文本编码器和位置编码。我们构建了完整的数据管道,用于更新和评估数据,为模型优化迭代提供帮助。原创 2024-05-15 22:03:13 · 2121 阅读 · 1 评论 -
爆火!!!中文版 Llama3 开源了!!
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。最近,Meta 推出了 Llama 3,为开源大模型树立了新的标杆。和以往的原始 Llama 模型一样,Llama 3 对中文的支持效果欠佳,经常会出现你用中文提问,它用英文或中文+英文回复的现象。因此,要想让国内用户用上该模型,开发者还需对其进行微调。原创 2024-05-15 09:19:23 · 1159 阅读 · 0 评论 -
基于 LLM 大模型 Agent 的实践总结和困境分享
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。本文提到大模型通常的工作方式,即通过提示词进行问答,并指出了两个主要问题:历史对话信息的管理和令牌数量的限制。文章讨论知识库问答和个人助手两个应用场景,并分析了各自面临的困境,如知识库无法有效处理多模态信息和大型文档,个人助手则受限于工具参数的复杂性和令牌长度。原创 2024-04-20 20:33:06 · 2089 阅读 · 0 评论 -
Llama 3 开源!手把手带你进行大模型推理,部署,微调和评估
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。近日,Meta发布了 Meta Llama 3系列,是 LLama 系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。原创 2024-04-20 20:14:08 · 7142 阅读 · 1 评论 -
用通俗易懂的方式讲解:大模型高级 RAG 检索策略之递归检索
递归检索相较于普通 RAG 检索,可以解决后者因文档切片过大而导致检索信息不准确的问题,下面是递归检索的流程图:递归检索在原始文档节点基础上,扩展了更多粒度更小的文档节点检索文档时如果检索到扩展节点,会递归检索到其原始节点,然后再将原始节点做为检索结果提交给 LLM在LlamaIndex[1]的实现中,递归检索主要有两种方式:块引用的递归检索和元数据引用的递归检索。原创 2024-04-14 10:43:36 · 2890 阅读 · 0 评论