使用 Lora进行微调DeepSeek大模型

最近已有不少大厂已停止秋招宣讲了。节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新手如何入门算法岗、该如何准备面试攻略、面试常考点、大模型技术趋势、算法项目落地经验分享等热门话题进行了深入的讨论。

总结链接如下:

喜欢本文记得收藏、关注、点赞


现存在的大模型已经很完善了,但在特殊场景下,他们的完成效果并不理想,也存在很多禁忌。主要体现在以下方面:

1、由于不可抗原因,对输出内容限制,对敏感内容禁止输出。

2、达不到理想的回复效果,忠实性不太理想,会天马行空。

3、想对产品做推广回复,在回复中要忠于产品,推广产品。

4、响应时长及稳定性问题

Lora 微调

大模型的微调需要较多资源,lora用于解决训练资源匮乏时的模型微调。主要思路是,在原模型中增加低秩矩阵,对低秩矩阵进行训练,以达到对模型微调的目的。

目前一般通过 peft 库来实现模型的 LoRA 微调。peft 库是 huggingface 开发的第三方库,其中封装了包括 LoRA、Adapt Tuning、P-tuning 等多种高效微调方法,可以基于此便捷地实现模型的 LoRA 微调。

这里介绍如何基于transformers、peft 等框架,对 DeepSeek-7B-chat 模型进行 Lora 微调。

图片

效果展示

图片

图片

图片

图片

图片

图片

环境安装

GPU资源:我使用的是A100

图片

在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,包括但不限于如下:

pip install transformers==4.35.2
pip install peft==0.4.0
pip install datasets==2.10.1
pip install accelerate==0.20.3
pip install tiktoken
pip install transformers_stream_generator

模型下载

从hugging face下载模型DeepSeek-7B-chat:

图片

安装了huggingface_cli库,可以使用进行安装。

pip install huggingface-cli

修改下载源:

# MacOS or Linux
export HF_ENDPOINT="https://hf-mirror.com"
# Windows Powershell
$env:HF_ENDPOINT = "https://hf-mirror.com"

下载deepseek-vl-7b-chat 到models文件夹

huggingface-cli download deepseek-ai/deepseek-vl-7b-chat --local-dir ./models

使用token下载更高效:

# 访问链接获取token
https://huggingface.co/login?next=%2Fsettings%2Ftokens

# 使用token下载:
# huggingface-cli download  --token token值 --resume-download 模型名称 --local-dir  下载的保存路径

# 示例,下载到当前路径:
huggingface-cli download  --token hf_ZyvtAlUzKIdFURYsd***** --resume-download deepseek-ai/deepseek-vl-7b-chat --local-dir  ./models

微调数据准备

因为我主要都是用于对话,所以微调数据也都是QA形式。

仅使用了1200条数据,训练时长5分钟不到。

微调数据 data.json

[{
    "instrution": "回答以下用户问题,仅输出答案。",
    "input": "1+1等于几?",
    "output": "2"
  },
  {
    "instruction": "现在你要扮演皇帝身边的女人--甄嬛",
    "input": "你是谁?",
    "output": "家父是大理寺少卿甄远道。"
  }
]

instruction :用户指令,告知模型其需要完成的任务;

input :用户输入,是完成用户指令所必须的输入内容;

output :模型应该给出的输出。

微调数据格式化

通过加载DeepSeek-7B-chat 模型完成微调数据的初始化,以保证微调时数据的一致性。

tokenizer = AutoTokenizer.from_pretrained('./deepseek-ai/deepseek-llm-7b-chat/', use_fast=False, trust_remote_code=True)

def process_func(example):
    MAX_LENGTH = 384    # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer(f"User: {example['instruction']+example['input']}\n\n", add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens
    response = tokenizer(f"Assistant: {example['output']}<|end▁of▁sentence|>", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]  
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

开始微调训练

设置lora相关的参数

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, # 模型类型
    # 需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False, # False:训练模式 True:推理模式
    r=8, # Lora 秩
    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1# Dropout 比例
)

设置TrainingArguments 参数

output_dir:模型的输出路径

per_device_train_batch_size:顾名思义 batch_size

gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。

logging_steps:多少步,输出一次log

num_train_epochs:顾名思义 epoch

gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行

    args = TrainingArguments(
    output_dir="./output/DeepSeek",
    per_device_train_batch_size=8,
    gradient_accumulation_steps=2,
    logging_steps=10,
    num_train_epochs=3,
    save_steps=100,
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True
)

使用 Trainer 训练

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_id,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()

微调模型保存

# 直接合并模型。。。。。
# 将 adapter 合并进模型(去除 adapter 依赖)
model = model.merge_and_unload()
model.save_pretrained("./output/DeepSeek_full")
tokenizer.save_pretrained("./output/DeepSeek_full")

模型大小:

原deepseek模型大小为13G左右, 微调后模仍为为13G左右。

效果测试

图片

图片

图片

图片

图片

图片

微调模型使用

# 加载模型
model = AutoModelForCausalLM.from_pretrained(merged_model_path, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(merged_model_path)
# 生成
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=50,  # 可调整生成长度
        do_sample=True,
        top_p=0.95,
        temperature=0.7
    )

A100加载测试微调模型,响应时长在500~600ms

gradio界面体验

gradio框架会生成两个访问链接,内网 和 公网,简单生成可视化界面:

可通过修改人设信息,体验其他角色设定

图片

加粗样式

### 使用LoRADeepSeek大模型进行微调 对于 DeepSeek 大模型而言,采用低秩自适应 (Low-Rank Adaptation, LoRA) 技术能够有效减少参数量并提高训练效率。具体操作通常依赖于 Hugging Face 提供的 `peft` 库来完成[^1]。 安装所需环境之前,请确认已具备 Python 编程基础以及 PyTorch 的基本理解能力。以下是详细的实践指南: #### 安装必要的软件包 为了使用 LoRADeepSeek 进行微调,需先安装 `transformers` 和 `peft` 库: ```bash pip install transformers peft ``` #### 加载预训练模型与分词器 加载来自 Hugging Face Model Hub 上托管的预训练 DeepSeek 模型及其对应的分词工具: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek-model-name" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` #### 配置LoRA设置 定义用于调整目标层权重矩阵增量的学习率和其他超参配置;这里假设只修改注意力机制中的 QKV 矩阵: ```python lora_config = { 'target_modules': ['q', 'k', 'v'], # 可选: q,k,v 或其他特定模块名称列表 'r': 8, # 秩数,默认为4或8 } ``` #### 初始化PeftModel对象 利用上述设定创建一个新的 PeftModel 实例,并将其应用于原始 Transformer 架构之上: ```python from peft import get_peft_model, LoraConfig config = LoraConfig(**lora_config) model = get_peft_model(model, config) ``` #### 准备数据集并启动训练过程 准备适合的任务导向型数据集之后,就可以按照常规流程执行优化算法了。注意,在此期间应保持大部分原有参数固定不变,仅更新由 LoRA 添加的小部分可学习向量。 ```python # 假设已经准备好了一个名为train_dataset的数据集 training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, learning_rate=5e-5, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, tokenizer=tokenizer, ) trainer.train() ``` 通过以上步骤即可成功应用 LoRA 方法对指定的大规模语言模型实施针对性改进措施。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值