最近这一两周不少公司已开启春招和实习招聘。
不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。
最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。
总结如下:
一面
- 自我介绍
- 在学校的研究方向
- 论文主要解决了什么问题
- 讲一下之前大模型项目实习经历
- LLaMA1/2/3的异同?
- 介绍下LLaMa关键技术点?
- 大模型的参数量为什么设计成 7B,13B,33B,65B 等如此怪异的数字?
- 为什么vllm能够加快大模型推理速度?
- 如何让大模型基于问题和 context 生成高质量的回答?
- RLHF 训练过程是怎么样的?
- DPO如何解决RLHF存在问题?
- BERT和GPT的区别,都是怎么训练的
- transformer和lstm+attention相比,主要的改进点是什么
- 算法题:lc115,不同的子序列
- 反问:部门业务和工作时长等
二面
这是我遇到过的最难的算法面试,最后一题在提示下做出来了。
- 自我介绍
- 实习期间最有意义事情是什么?
- 你觉得LLM对做推荐算法有什么帮助吗?
- LLM与推荐结合落地方面遇到什么问题?
- LLM想要和推荐结合,有没有可落地的方案?
- 抖音和小红书的推荐系统你觉得有什么差别,从算法的角度谈一谈
- 小红书和抖音的冷启动处理机制,你觉得有什么区别?
- 如何优化大模型检索过程,以减少延迟和提高效率?
- 大模型训练推理框架平时用那些?
- 详细说说Deepspeed的机制
- 大模型训练,什么时候需要预训练?什么时候需要sft?什么时候需要dpo?
- 如何提高模型的泛化能力?
- 算法题1:有n个灯泡,一开始都关闭,执行n轮操作,第k轮将序号为k的倍数的灯的状态反转,请问n轮操作后有几盏灯是亮着的。
- 算法题2:给定一个数组,每次从中取出一个数k,然后将数组中所有k-1和k+1都去掉,请问如何取才能保证所取的数之和最大,最大值为多少。