面完小红书大模型算法岗,心态崩了。。。

最近这一两周不少公司已开启春招和实习招聘。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结如下:

在这里插入图片描述


一面

  1. 自我介绍
  2. 在学校的研究方向
  3. 论文主要解决了什么问题
  4. 讲一下之前大模型项目实习经历
  5. LLaMA1/2/3的异同?
  6. 介绍下LLaMa关键技术点?
  7. 大模型的参数量为什么设计成 7B,13B,33B,65B 等如此怪异的数字?
  8. 为什么vllm能够加快大模型推理速度?
  9. 如何让大模型基于问题和 context 生成高质量的回答?
  10. RLHF 训练过程是怎么样的?
  11. DPO如何解决RLHF存在问题?
  12. BERT和GPT的区别,都是怎么训练的
  13. transformer和lstm+attention相比,主要的改进点是什么
  14. 算法题:lc115,不同的子序列
  15. 反问:部门业务和工作时长等

二面

这是我遇到过的最难的算法面试,最后一题在提示下做出来了。

  1. 自我介绍
  2. 实习期间最有意义事情是什么?
  3. 你觉得LLM对做推荐算法有什么帮助吗?
  4. LLM与推荐结合落地方面遇到什么问题?
  5. LLM想要和推荐结合,有没有可落地的方案?
  6. 抖音和小红书的推荐系统你觉得有什么差别,从算法的角度谈一谈
  7. 小红书和抖音的冷启动处理机制,你觉得有什么区别?
  8. 如何优化大模型检索过程,以减少延迟和提高效率?
  9. 大模型训练推理框架平时用那些?
  10. 详细说说Deepspeed的机制
  11. 大模型训练,什么时候需要预训练?什么时候需要sft?什么时候需要dpo?
  12. 如何提高模型的泛化能力?
  13. 算法题1:有n个灯泡,一开始都关闭,执行n轮操作,第k轮将序号为k的倍数的灯的状态反转,请问n轮操作后有几盏灯是亮着的。
  14. 算法题2:给定一个数组,每次从中取出一个数k,然后将数组中所有k-1和k+1都去掉,请问如何取才能保证所取的数之和最大,最大值为多少。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值