在Python中判断素数的方法

1.试除法

        试除法是最基本的素数判断方法,通过从2到√n逐一检查是否有因数来判断一个数是否为素数。其时间复杂度为O(√n),适用于单个素数判断

import math

def is_prime(n):
    if n < 2:
        return False
    for i in range(2, int(math.sqrt(n)) + 1):
        if n % i == 0:
            return False
    return True

2.优化的试除法

        基本试除法需要检查从2到√n的所有整数,而优化的试除法只需要检查6k±1形式的数,减少了约2/3的检查次数,适用于单个素数的高效判断

def is_prime_optimized(n):
    if n < 2:
        return False
    if n <= 3:
        return True
    if n % 2 == 0 or n % 3 == 0:
        return False
    i = 5
    while i * i <= n:
        if n % i == 0 or n % (i + 2) == 0:
            return False
        i += 6
    return True

3.埃拉托斯特尼筛法

        埃拉托斯特尼筛法是一种经典的算法,用于快速找出一定范围内的所有素数。它的基本思想是从2开始,依次标记每个素数的倍数为合数,最终剩下的未被标记的数即为素数。其时间复杂度为O(n log log n),适合用于批量判断素数

def sieve_of_eratosthenes(n):
    primes = [True for i in range(n+1)]
    p = 2
    while (p * p <= n):
        if (primes[p] == True):
            for i in range(p * p, n+1, p):
                primes[i] = False
        p += 1
    prime_numbers = [p for p in range(2, n) if primes[p]]
    return prime_numbers

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值