返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV如何实现背投(58)
下一篇 :OpenCV在图像中寻找轮廓(60)
目标
在本教程中,您将学习如何:
- 使用 OpenCV 函数 matchTemplate()搜索图像贴片和输入图像之间的匹配项
- 使用 OpenCV 函数 minMaxLoc()查找给定数组中的最大值和最小值(以及它们的位置)。
matchTemplate() 和 minMaxLoc() 都是 OpenCV 库中常用的图像处理函数,通常用于模板匹配和特征检测等操作。
matchTemplate() 是一个常用的模板匹配函数,它可以在一个大图像上通过模板匹配方法定位和识别目标区域。该函数的基本思路是,在大图像中滑动一个与目标尺寸相同的小区域,然后利用图像相似度度量方法比较该区域与目标模板的相似度,最后得到相似度矩阵,并在其中选择最佳匹配位置。
minMaxLoc() 则是由 matchTemplate() 调用的一个配套函数,它用于找到匹配模板结果中最佳匹配位置。该函数的基本思想是,在相似度矩阵中找到最大值和最小值,然后根据所需的结果类型返回相应最大/最小值及其位置和相应的匹配模板。
因此,matchTemplate() 和 minMaxLoc() 通常会一起使用。matchTemplate() 函数可以计算出匹配模板的相似度矩阵,并返回最大/最小数值的位置或多个最大/最小值的位置;而 minMaxLoc() 函数则用于确定相似度矩阵中的最大/最小值及位置,以确定匹配区域。这两个函数的联合使用可以实现图像识别、目标跟踪等更加复杂的图像处理和分析操作。
理论
什么是模板匹配?
模板匹配是一种用于查找图像中与模板图像(补丁)匹配(相似)的区域的技术。
虽然补丁必须是一个矩形,但可能不是所有的矩形都是相关的。在这种情况下,可以使用掩码来隔离补丁中应该用于查找匹配项的部分。
它是如何工作的?
-
我们需要两个主要组件:
- 源图像(I):我们希望在其中找到与模板图像匹配的图像
- 模板图像(T):将与源图像进行比较的修补图像
我们的目标是检测匹配度最高的区域: