残差(Residual)

残差

残差(Residual)是深度学习中常用的概念,尤其是在残差网络(ResNet)和类似架构中。残差的核心思想是通过引入“跳跃连接”(Skip Connection),使得神经网络能够学习输入和输出之间的差异(即残差),而不是直接学习输出本身。这种方法有助于缓解深度神经网络训练中的梯度消失梯度爆炸问题。

残差的定义:

在传统的神经网络中,每一层的输出是基于输入的某种非线性变换。但在残差网络中,每一层的输出是通过添加原输入(即残差)与经过变换后的结果进行结合,形式如下:

y = F ( x ) + x y = F(x) + x y=F(x)+x

其中:

  • x x x 是当前层的输入,
  • F ( x ) F(x) F(x) 是当前层的变换(通常是卷积层或全连接层的输出),
  • y y y 是当前层的输出。

在这个公式中,残差就是 F ( x ) F(x) F(x),即网络学习的部分,而 x x x 是输入。这种连接方式允许信息直接从上一层传递到下一层,而不会经过复杂的变换,从而帮助网络更容易训练。

为什么使用残差:

  1. 缓解梯度消失/梯度爆炸:深度网络训练时,梯度消失或梯度爆炸问题会导致模型无法有效训练。通过残差连接,梯度可以直接传播,减缓了这些问题。
  2. 更容易训练深层网络:残差学习使得训练更深层次的神经网络成为可能,因为网络不需要学习复杂的映射,只需要学习输入与输出之间的差异。
  3. 信息传递更加高效:通过跳跃连接,网络可以保留更多的原始信息(输入 x x x),这有助于更好的表示学习。

在ResNet中的应用:

在ResNet中,残差块(Residual Block)包含了一个跳跃连接,输入数据 x x x 会直接加到经过卷积处理后的结果上。这种结构使得深层网络能够更容易训练,极大地提高了深度网络的性能。ResNet的核心思想就是通过“残差学习”来优化深度网络的训练过程。

总结:

残差本质上是通过跳跃连接直接将输入数据加到当前层的输出上,从而让网络学习输入和输出之间的差异,而不是直接学习整个映射。这样做不仅可以提高训练效率,还能使网络能够更好地处理梯度问题,尤其是在深层网络中。

### 关于残差网络 (Residual Network) #### 深度学习架构 残差网络(ResNet)是一种深度神经网络架构,其核心特点是引入了跳跃连接(skip connections),也称为残差块。这种设计允许信息绕过某些层直接传递到后续层,从而有效缓解深层网络中的梯度消失问题并提高模型性能[^1]。 #### 特点 - **解决退化问题**:随着网络层数增加,在传统卷积网络中会出现精度饱和甚至下降的现象,即所谓的“退化”现象。而ResNet通过引入残差学习机制可以很好地克服这一难题,即使在网络非常深的情况下也能保持良好的泛化能力[^3]。 - **恒等映射与其它复杂映射的学习**:ResNet不仅能够有效地学习复杂的特征变换,而且还能轻松实现简单的线性传输路径——亦即当某几层对于特定任务并非必要时,它们可以通过调整权重参数使其输出接近零,进而形成一条近似的直通线路。 - **易于优化**:由于存在多条前向传播通道以及反向误差累积途径被分割成多个较短片段的特点,使得整个系统的训练过程变得更加稳定高效[^2]。 ```python import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out ``` 此代码展示了如何构建一个基本的ResNet模块`BasicBlock`,其中包含了两个连续的标准卷积操作加上Batch Normalization和ReLU激活函数,并且实现了跳接功能以支持残差学习。 #### 应用 自提出以来,ResNet已被广泛应用于各类图像识别任务当中,包括但不限于物体检测、语义分割等领域。此外,它还促进了更深层次研究的发展,比如对抗样本防御策略的设计等方面都有所涉及。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值