0.回溯算法介绍
什么是回溯算法
回溯算法是⼀种经典的递归算法,通常⽤于解决组合问题、排列问题和搜索问题等。
回溯算法的基本思想:从⼀个初始状态开始,按照⼀定的规则向前搜索,当搜索到某个状态⽆法前进时,回退到前⼀个状态,再按照其他的规则搜索。回溯算法在搜索过程中维护⼀个状态树,通过遍历状态树来实现对所有可能解的搜索。
回溯算法的核⼼思想:“试错”,即在搜索过程中不断地做出选择,如果选择正确,则继续向前搜索;否则,回退到上⼀个状态,重新做出选择。回溯算法通常⽤于解决具有多个解,且每个解都需要搜索才能找到的问题。
1.全排列
思路历程:
class Solution {
public:
vector<vector<int>> ret;
vector<int> path;
bool check[7];
vector<vector<int>> permute(vector<int>& nums) {
dfs(nums);
return ret;
}
void dfs(vector<int>& nums)
{
if(path.size() == nums.size())
{
ret.push_back(path);
return;
}
for(int i = 0; i < nums.size(); i++)
{
if(check[i] == false)
{
path.push_back(nums[i]);
check[i] = true;
dfs(nums);
path.pop_back();
check[i] = false;
}
}
}
};
2.子集
思路历程
解法一代码:
class Solution {
public:
vector<vector<int>> ret;
vector<int> path;
vector<vector<int>> subsets(vector<int>& nums) {
dfs(nums, 0);
return ret;
}
void dfs(vector<int>& nums, int pos)
{
if(pos == nums.size())
{
ret.push_back(path);
return;
}
//选
path.push_back(nums[pos]);
dfs(nums, pos + 1);
path.pop_back();//恢复现场
//不选
dfs(nums, pos + 1);
}
};
解法二代码:
class Solution {
public:
vector<vector<int>> ret;
vector<int> path;
vector<vector<int>> subsets(vector<int>& nums) {
dfs(nums, 0);
return ret;
}
void dfs(vector<int>& nums, int pos)
{
ret.push_back(path);
for(int i = pos; i < nums.size(); i++)
{
path.push_back(nums[i]);
dfs(nums, i + 1);
path.pop_back(); //恢复现场
}
}
};