【递归、回溯和剪枝】全排列 && 子集

0.回溯算法介绍 

什么是回溯算法
回溯算法是⼀种经典的递归算法,通常⽤于解决组合问题、排列问题和搜索问题等。
回溯算法的基本思想:从⼀个初始状态开始,按照⼀定的规则向前搜索,当搜索到某个状态⽆法前进时,回退到前⼀个状态,再按照其他的规则搜索。回溯算法在搜索过程中维护⼀个状态树,通过遍历状态树来实现对所有可能解的搜索。
回溯算法的核⼼思想:“试错”,即在搜索过程中不断地做出选择,如果选择正确,则继续向前搜索;否则,回退到上⼀个状态,重新做出选择。回溯算法通常⽤于解决具有多个解,且每个解都需要搜索才能找到的问题。
 

1.全排列

全排列

思路历程: 

 

 

class Solution {
public:
    vector<vector<int>> ret;
    vector<int> path;
    bool check[7];
    vector<vector<int>> permute(vector<int>& nums) {
        dfs(nums);
        return ret;
    }
    void dfs(vector<int>& nums)
    {
        if(path.size() == nums.size())
        {
            ret.push_back(path);
            return;
        }
        for(int i = 0; i < nums.size(); i++)
        {
            if(check[i] == false)
            {
                path.push_back(nums[i]);
                check[i] = true;
                dfs(nums);
                path.pop_back();
                check[i] = false;
            }
        }
    }
};

2.子集 

子集

 思路历程

 

解法一代码: 

class Solution {
public:
    vector<vector<int>> ret;
    vector<int> path;
    vector<vector<int>> subsets(vector<int>& nums) {
        dfs(nums, 0);
        return ret;
    }
    void dfs(vector<int>& nums, int pos)
    {
        if(pos == nums.size())
        {
            ret.push_back(path);
            return;
        }
        //选
        path.push_back(nums[pos]);
        dfs(nums, pos + 1);
        path.pop_back();//恢复现场

        //不选
        dfs(nums, pos + 1);
    }
};

解法二代码: 

class Solution {
public:
    vector<vector<int>> ret;
    vector<int> path;
    vector<vector<int>> subsets(vector<int>& nums) {
        dfs(nums, 0);
        return ret;
    }
    void dfs(vector<int>& nums, int pos)
    {
        ret.push_back(path);

        for(int i = pos; i < nums.size(); i++)
        {
            path.push_back(nums[i]);
            dfs(nums, i + 1);
            path.pop_back(); //恢复现场
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花影随风_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值