【动态规划】子序列问题

1.最长递增子序列

最长递增子序列

 代码:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        //1.创建dp表
        //2.初始化
        //3.填表
        //4.返回结果
        int n = nums.size();
        int ret = 1;
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[j] < nums[i])
                {
                    dp[i] = max(dp[j] + 1, dp[i]);
                }
            }
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};

2.摆动序列

摆动序列

代码:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        //1.创建dp表
        //2.初始化
        //3.填表
        //4.返回结果
        int n = nums.size();
        int ret = 1;
        vector<int> f(n, 1), g(n, 1);
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[j] < nums[i])
                    f[i] = max(g[j] + 1, f[i]);
                else if(nums[j] > nums[i])
                    g[i] = max(f[j] + 1, g[i]);
            }
            ret = max(ret, max(f[i], g[i]));
        }
        return ret;
    }
};

3.最长递增子序列的个数

最长递增子序列的个数

思路:

 代码:

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        vector<int> len(n, 1), count(n, 1);
        int retlen = 1, retcount = 1;
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(nums[j] < nums[i])
                {
                    if(len[j] + 1 == len[i])
                        count[i] += count[j];
                    else if(len[j] + 1 > len[i])//重新计数
                        len[i] = len[j] + 1, count[i] = count[j];
                }
            }
            if(len[i] == retlen)
                retcount += count[i];
            else if(len[i] > retlen)
                retlen = len[i], retcount = count[i];
        }
        return retcount;
    }
};

4.最长数对链

最长数对链

代码:

class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        //预处理,使大数对始终在小数对后面,满足子序列递增的条件
        sort(pairs.begin(), pairs.end());
        int n = pairs.size();
        vector<int> dp(n, 1);
        int ret = 1;
        for(int i = 1; i < n; i++)
        {
            for(int j = 0; j < i; j++)
            {
                if(pairs[j][1] < pairs[i][0])
                    dp[i] = max(dp[i], dp[j] + 1);
            }
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};

5.最长定差子序列

最长定差子序列

代码:

class Solution {
public:
    int longestSubsequence(vector<int>& arr, int difference) {
        unordered_map<int, int> hash;//存放arr[i] - dp[i]进行绑定
        hash[arr[0]] = 1;//初始化

        int ret = 1;
        for(int i = 1; i < arr.size(); i++)
        {
            hash[arr[i]] = hash[arr[i] - difference] + 1;
            ret = max(ret, hash[arr[i]]);
        }
        return ret;
    }
};

6.最长的斐波那契子序列的长度

最长的斐波那契子序列的长度

代码:

class Solution {
public:
    int lenLongestFibSubseq(vector<int>& arr) {
        int n = arr.size();
        unordered_map<int, int> hash;
        for(int i = 0; i < n; i++) hash[arr[i]] = i;//把数组中的数值与下标进行绑定
        
        int ret = 2;
        vector<vector<int>> dp(n, vector<int>(n, 2));
        for(int j = 2; j < n; j++)//固定最后一个位置
        {
            for(int i = 1; i < j; i++)//固定倒数第二个位置
            {
                int a = arr[j] - arr[i];
                if(hash.count(a) && a < arr[i]) dp[i][j] = dp[hash[a]][i] + 1;
                ret = max(ret, dp[i][j]);
            }
        }
        return ret < 3 ? 0 : ret;
    }
};

7.最长等差数列

最长等差数列

代码:

class Solution {
public:
    int longestArithSeqLength(vector<int>& nums) {
        unordered_map<int, int> hash;
        hash[nums[0]] = 0;

        int n = nums.size();
        vector<vector<int>> dp(n, vector<int>(n, 2));//创建dp表 + 初始化
        
        int ret = 2;
        for(int i = 1; i < n; i++)//固定倒数第二个数
        {
            for(int j = i + 1; j < n; j++)//枚举倒数第一个数
            {
                int a = 2 * nums[i] - nums[j];
                if(hash.count(a))
                    dp[i][j] = dp[hash[a]][i] + 1;
                ret = max(ret, dp[i][j]);
            }
            hash[nums[i]] = i;
        }
        return ret;
    }
};

 8.等差数列划分ii - 子序列

等差数列划分ii - 子序列

 

代码:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        unordered_map<long long, vector<int>> hash;
        for(int i = 0; i < nums.size(); i++) hash[nums[i]].push_back(i);

        int sum = 0;
        int n = nums.size();
        vector<vector<int>> dp(n, vector<int>(n));
        for(int j = 2; j < n; j++)//固定倒数第一个数
        {
            for(int i = 1; i < j; i++)//枚举倒数第二个数
            {
                long long a = (long long)2 * nums[i] - nums[j];
                if(hash.count(a))
                {
                    for(auto k : hash[a])
                    {
                        if(k < i) dp[i][j] += dp[k][i] + 1;//+1是因为k,i,j三个位置本身也可以作为等差数列,
                                                            //+=是因为k可以有很多个
                    }
                }
                sum += dp[i][j];
            }
        }
        return sum;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花影随风_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值