递增三元组 刷题笔记

本文介绍了一种通过两层循环和二分查找优化的方法,解决了一个题目:在给定三个整数数组a、b和c中,找出满足a中的数小于b中的数且b中的数小于c中的数的计数问题。作者展示了如何利用二分查找减少循环次数,避免整数溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意为 若存在 a中的数小于b中的数,b中的数小于c中的数 则该数算一种方案

思路 

暴力模拟优化

两层循环遍历即可 

从b到c的过程我们发现 第三层并不需要循环 直接加上 大于b的数量即可

那么第一层和第三层是对称的 我们有没有可能再去掉一层循环

只做一次遍历

可以的

直接以b为媒介 

往上a层找小于b的元素个数

往下c层找大于b的元素个数

ans+=两者数量相乘即可

并且在两次查找 的过程中 我们可以使用二分来查找

代码 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int a[N], b[N], c[N];
int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i++) 
    {
        cin>>a[i];
    }
     for (int i = 0; i < n; i++) 
    {
        cin>>b[i];
    }
     for (int i = 0; i < n; i++) 
    {
        cin>>c[i];
    }
    sort(a, a + n);  //二分需要满足单调性
    sort(b, b + n);
    sort(c, c + n);
    LL res = 0;  //答案可能会很大,会爆int
    for (int i = 0; i < n; i++)
    {
        int l = 0, r = n - 1;  //二分查找a数组中最后一个小于b[i]的数的下标
        while (l < r)
        {
            int mid = (l + r + 1) / 2;
            if (a[mid] < b[i])   {
                l = mid;
            }
            else  {
                r = mid - 1;
            } 
        }
        if (a[l] >= b[i])   //如果未找到小于b[i]的数,将x标记为-1,后续计算时 x+1==0
        {
            l = -1;
        }
        int x = l;
        l = 0, r = n - 1;
        while (l < r)
        {
            int mid = (l + r) / 2;
            if (c[mid] > b[i])  {
                r = mid;
            } 
            else  {
                l = mid + 1;
            }
        }
        if (c[l] <= b[i])   //如果未找到大于b[i]的数,将y标记为n,后续计算时 n-y==0;
        {
            r = n;
        }
        int y = r;
        res += (LL)(x + 1)*(n - y);
    }
    printf("%lld\n", res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值