给你n根火柴棍,你可以拼出多少个形如“A+B=C”的等式?等式中的A、B、C是用火柴棍拼出的整数(若该数非零,则最高位不能是0)。用火柴棍拼数字0-9的拼法如图所示:
注意:
-
加号与等号各自需要两根火柴棍
-
如果A≠B,则A+B=C与B+A=C视为不同的等式(A、B、C>=0)
-
n根火柴棍必须全部用上
输入格式
共一行,有一个整数n(n<=24)。
输出格式
共一行,表示能拼成的不同等式的数目。
样例
input
Input 1:
14
Input 2:
18
output
Output 1:
2
Output 2:
9
问题分析:
采用枚举法,因为题目中最多有24根火柴棒,除去“+”,“=”所用的4根火柴棒,所以最多只剩下20根火柴棒。在0-9中,1所用的火柴棒最少,只要2根,所以20根火柴棒中,只能组成10个1。拼出像“A+B=C”这样的等式要三个整数,将10个1品均分成3份,每份3个1,多余的1放在随意一份中,但其并不能构成等式。因此,在A+B=C这个等式中,任意一个数都不能超过1111。要分别枚举A,B的值,范围是0-1111,C通过A+B算出来。若A所使用的火柴棒根数与B所使用的火柴棒根数,再加上C所使用的火柴棒根数正好等于m-4(m为火柴棒总数),则成功找出一组等式,循环判断,u加一。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int f(int x){//f为自定义函数,用来计算一个数所需要的火柴棒总数
int s=0;
int w[10]={6,2,5,5,4,5,6,3,7,6};//记录w数组内0-9之间每个数字所需的火柴棒数量
while(x/10!=0){//while循环用来分离x的每一位,找到对应的火柴棒根数,累加到s
s+=w[x%10];
x=x/10;
}
s+=w[x];//加上最后一个数字对应的根数
return s;//返回值是火柴棒的总根数
}
int main(){
int a,b,c,m,u=0;//u用来记录成功方案数,m表示火柴棒总数
cin>>m;
for(int a=0;a<=1111;a++){//枚举a和b
for(int b=0;b<=1111;b++){
c=a+b;//计算c
if(f(a)+f(b)+f(c)==(m-4))//m-4是应为要减去+与=所用的火柴棒根数 ,调用f函数
u++;
}
}
cout<<u<<endl;//输出成功方案总数(u)
return 0;
}