斯坦福QJE最新研究:AI让菜鸟效率暴增30%,但高手们却惨遭“反向优化”?

图片

斯坦福与MIT在美国经济学季刊最新研究揭示,生成式AI在职场中掀起了一场“效率革命”:平均提升15%的问题解决速度,而新手和低技能员工的进步更是高达30%!但有趣的是,顶尖员工反而可能因AI“拖后腿”——他们的回答质量小幅下降,甚至被AI建议带偏。

通过分析数百万条客服聊天记录,研究者发现AI不仅加速了工作流程,还让国际员工的英语表达更地道,甚至缓解了客户的暴躁情绪。但这场技术红利并非雨露均沾——AI最擅长帮人类解决“中等难度”问题,而对最常见或最冷门的问题效果有限。

图片

文章摘要:

我们使用来自 5,172 名客户支持代理的数据研究了基于生成式 AI 的对话助手的交错引入。获得 AI 协助可将员工的工作效率(以每小时解决的问题衡量)平均提高 15%,并且员工之间存在很大的异质性。不同药物的效果差异很大。经验不足和技能较低的工人提高了产出的速度和质量,而最有经验和最高技能的工人的速度略有提高,质量略有下降。我们还发现证据表明,人工智能辅助有助于工人学习并提高英语流利度,尤其是在国际代理中。虽然 AI 系统随着训练数据的增加而改进,但我们发现,对于中等罕见的问题,采用 AI 的收益最大,在这些情况下,人类代理的基线经验较少,但系统仍然有足够的训练数据。最后,我们提供证据表明 AI 协助在几个方面改善了工作体验:客户更有礼貌,不太可能要求与经理交谈。(点击下方“阅读全文”可看原文)

数据分析

1. 效率飙升,但赢家是菜鸟

AI助手让客服平均每小时多解决15%的问题,但低技能员工效率提升30%,而高技能员工几乎无增长(图III)。

图片

图II显示,AI上线后效率立竿见影,且效果持久;图V更直观——新手用AI两个月就能达到老手半年的水平。

图片

图片

AI把高手的“套路”教给了新手(比如如何快速诊断问题),但对高手反而成了干扰。

2. AI的“偏心眼”:中等难题才是主场

数据亮点:AI对“出现频率中等”的问题效果最佳,处理时间缩短14%。

为什么?常见问题人类已熟练,冷门问题AI缺数据;而中等难题恰好结合了AI的知识库和人类的经验盲区。

图片

3. 客户变温柔了,员工却可能“偷懒”

客户骂人少了,请求转接经理的概率降了25% —— 因为AI教员工用更体贴的话术(如“我完全理解您的 frustration!”)。

图片

图VI显示,连顶尖员工也越来越依赖AI建议(即使质量下降),可能减少原创解决方案的输入,长期恐削弱AI训练数据质量。

图片

图片

4. 学英语?AI是隐藏老师

意外收获:菲律宾客服的英语流畅度显著提升(图IX),尤其是“美式地道表达”(比如把“have a blessed day”改成“have a great day”)。

图片

启示

1. 教育体系将被颠覆:经验贬值的时代来了

传统“熬资历”失效:新手+AI 2个月=老手6个月,职业培训必须转向“AI协作能力”。

2. 企业管理的AI悖论

绩效考核陷阱:如果AI让低效员工看起来高效,企业如何识别真人才?

团队结构重构:可能需要AI训练师岗位,由顶尖员工专门优化AI,而非处理日常任务。

3. 语言霸权暗流:AI正在美式化全球职场

菲律宾客服的英语更地道,实则是AI隐性强加美式表达习惯,:+文化多样性可能被AI的“主流偏好”无声侵蚀。

4. 情绪劳动被标准化:AI教你假笑

客户满意度提升因AI预设了正确情绪反应,但人类的情感共鸣会否被机械流程取代?,共情能力可能成为奢侈品,只有高价人工服务才提供。

5. 技术红利的隐形天花板

AI对中等技能岗位提升最大,但对极高/极低技能影响有限。

6.人类最后的堡垒:创造力or摆烂?

论文中顶尖员工质量下降暴露一个危险信号:

如果AI把60分方案送到眼前,多少人会拒绝追求100分?

未来分化:AI增强型人类 vs AI依赖型僵尸。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值