中国观鸟数据集(CSV)

数据简介

      今天我们分享的数据是观鸟数据集,该数据整理中国观鸟记录中心的鸟类报告数据,在2024年获取了该网站种鸟类的报告信息,详情信息以及鸟种信息,分别整理为各省的数据,方便大家研究使用,方便大家研究使用。

      该数据集涵盖中国各省鸟类报告信息,可用于分析鸟类分布规律、迁徙路线与生态环境关联等,助力生态保护研究。同时服务于生物多样性研究、环境变化监测,为制定针对性保护措施提供依据,推动相关科研与实践发展。

数据详情

数据来源:中国观鸟记录中心

数据时间:1980-2024

数据范围:中国各省

数据格式:csv

数据概览

该数据集分三种文件夹存储,其中各文件夹内数据的指标分别是:

报告

图片

详情

图片

鸟种

图片

数据概览如下:

图片

参考文献

[1]Meng L, Liu P, Zhou Y, et al. Blaming the wind? The impact of wind turbine on bird biodiversity[J]. Journal of Development Economics, 2025, 172: 103402.

### 处理CSV数据集的方法 在Python中,`pandas`库是一个强大的工具,用于加载、分析和操作结构化数据,特别是CSV文件。以下是关于如何使用 `pandas` 来处理 CSV 数据集的具体方法。 #### 使用 Pandas 加载 CSV 文件 可以利用 `pd.read_csv()` 函数来读取 CSV 文件并将其转换为 DataFrame 对象。此函数支持多种参数配置以适应不同的文件格式需求[^2]。 ```python import pandas as pd # 定义列名 columns = ['a', 'b', ',c', 'label'] # 通过指定分隔符、列名以及是否有表头行来加载数据 df = pd.read_csv("classify.csv", sep=',', names=columns, header=0) # 查看最后几行数据以验证加载成功与否 print(df.tail()) ``` 上述代码片段展示了如何定义列名称列表,并通过调用 `read_csv` 方法传入路径、分隔字符以及其他选项完成数据帧创建过程。 #### 探索已加载的数据集 一旦数据被成功导入到内存中的DataFrame对象里之后,就可以执行各种探索性数据分析(EDA)任务了。例如: - **显示前五行记录**: 可帮助快速浏览整个表格的内容布局情况。 ```python print(df.head()) ``` - **统计描述信息**: 提供数值型字段的基本统计数据概览,像计数、均值、标准差等指标。 ```python print(df.describe()) ``` - **检查缺失值**: 找出哪些单元格存在空缺状况以便后续清理工作开展。 ```python print(df.isnull().sum()) ``` 这些基本功能有助于初步理解所研究的对象特性及其质量水平[^1]。 #### 进一步的操作与应用 除了简单的展示之外,还可以基于实际业务逻辑实现更复杂的计算或者可视化呈现效果。比如按照某个特定条件筛选子集;对某些变量实施聚合运算得出新的特征维度等等。这些都是日常工作中常见的场景之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值