GJO-VMD-GJO-LSTM(金豺优化算法-变分模态分解-金豺优化算法-长短期记忆网络)

GJO-VMD-GJO-LSTM(金豺优化算法-变分模态分解-金豺优化算法-长短期记忆网络)

金豺优化算法(Golden jackal optimization,GJO)是一种新的元启发式算法,它是由Nitish Chopra和Muhammad Mohsin Ansari于2022年提出的。该算法模拟了金豺的合作狩猎行为,包括搜索猎物、包围猎物和攻击猎物三个基本步骤。

该算法的步骤如下:

  1. 初始化种群:随机生成一定数量的个体作为初始种群。
  2. 评估适应度:根据问题的适应度函数,计算每个个体的适应度值。
  3. 更新个体位置:根据个体的适应度值和位置信息,更新个体的位置。
  4. 更新全局最优解:根据个体的适应度值,更新全局最优解。
  5. 更新个体速度:根据个体的位置信息和全局最优解,更新个体的速度。
  6. 更新个体位置:根据个体的速度,更新个体的位置。
  7. 判断终止条件:判断是否满足终止条件,如果满足则结束算法,否则返回步骤3。

GJO算法的优点包括:

  1. 简单易实现:GJO算法的实现相对简单,不需要复杂的数学模型和计算。
  2. 全局搜索能力强:GJO算法通过模拟金豺的行为,具有较强的全局搜索能力,可以找到较优的解。
  3. 适应性强:GJO算法可以适应不同类型的问题,适用于多种优化问题的求解

结合其优点本文采用GJO进行对VMD参数寻优以及LSTM参数寻优

利用金豺寻优效果由速度快的的特点对VMD变分模态分解进行参数寻优 寻优参数为:分解层数K 惩罚因子α效果如图:

K A虽迭代

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值