GJO-VMD-GJO-LSTM(金豺优化算法-变分模态分解-金豺优化算法-长短期记忆网络)
金豺优化算法(Golden jackal optimization,GJO)是一种新的元启发式算法,它是由Nitish Chopra和Muhammad Mohsin Ansari于2022年提出的。该算法模拟了金豺的合作狩猎行为,包括搜索猎物、包围猎物和攻击猎物三个基本步骤。
该算法的步骤如下:
- 初始化种群:随机生成一定数量的个体作为初始种群。
- 评估适应度:根据问题的适应度函数,计算每个个体的适应度值。
- 更新个体位置:根据个体的适应度值和位置信息,更新个体的位置。
- 更新全局最优解:根据个体的适应度值,更新全局最优解。
- 更新个体速度:根据个体的位置信息和全局最优解,更新个体的速度。
- 更新个体位置:根据个体的速度,更新个体的位置。
- 判断终止条件:判断是否满足终止条件,如果满足则结束算法,否则返回步骤3。
GJO算法的优点包括:
- 简单易实现:GJO算法的实现相对简单,不需要复杂的数学模型和计算。
- 全局搜索能力强:GJO算法通过模拟金豺的行为,具有较强的全局搜索能力,可以找到较优的解。
- 适应性强:GJO算法可以适应不同类型的问题,适用于多种优化问题的求解
结合其优点本文采用GJO进行对VMD参数寻优以及LSTM参数寻优
利用金豺寻优效果由速度快的的特点对VMD变分模态分解进行参数寻优 寻优参数为:分解层数K 惩罚因子α效果如图:
K A虽迭代