SGMD辛几何模态分解

将时间序列分解为一组独立的模态分量。模态混叠情况大幅度降低

SGMD利用辛几何相似度变换来求解哈密顿矩阵的特征值,并利用其

相应的特征向量来重构单分量信号。同时,SGMD可以在没有任何用户定义参数的情况下,

有效地重构现有的模式,去除噪声。该方法的本质是将信号分解转换为辛几何变换

SGMD可以对信号进行完全分解,不仅解决了EEMD方法和小波变换中的经验选择参数的问题,

而且避免了LCD方法的强制分解问题。从所得部件的包络谱来看,SGMD所得分解的包络谱更加明显,对于故障识别准确度提升有很大的帮助

辛几何模态分解(Symmetric Geometric Mode Decomposition,SGMD)是一种基于辛几何理论的信号分解方法,与传统的奇异值分解(SVD)和主成分分析(PCA)等线性方法不同。它的优势主要有以下几点:


 

### 辛几何模态分解与样本熵重构 #### 辛几何模态分解简介 辛几何模态分解(Symplectic Geometry Mode Decomposition, SGMD)是一种用于信号处理的技术,它能够有效地分离复杂的多分量信号为若干个具有物理意义的单分量模式。该方法利用了辛几何理论中的特性来构建一个更加鲁棒和精确的模型[^2]。 #### 样本熵的概念及其应用 样本熵(Sample Entropy)是用来量化时间序列复杂度的一种统计测量工具。通过计算两个相邻子序列之间的相似程度并评估其不匹配的概率,从而得到整个系统的有序化水平。在信号分析中,样本熵常被用来衡量不同频率成分的重要性以及识别潜在的趋势变化[^3]。 #### 结合SGMD与样本熵进行重构的方法概述 为了实现基于SGMD和样本熵的信号重构过程,通常会遵循以下几个方面的工作: 1. **预处理阶段**: 对原始数据执行必要的清理和平滑操作,去除噪声干扰; 2. **特征提取**: 使用SGMD技术将输入的时间序列分解成多个IMF(Intrinsic Mode Function),即固有模态函数; 3. **熵值计算**: 针对每个IMF分别求取对应的样本熵值作为权重系数; 4. **加权组合**: 将所有IMFs按照各自所占比例重新叠加起来形成最终重建后的信号波形。 以下是MATLAB环境下简单演示上述流程的一个例子: ```matlab % 加载待处理的数据集 load('your_signal.mat'); % 假设文件名为 your_signal.mat 并包含变量 'signal' % 执行SGMD分解 imfs = sgmd(signal); % 初始化存储空间保存各层IMF的样本熵 sample_entropies = zeros(size(imfs)); for i=1:length(imfs) sample_entropies(i) = sampen(imfs{i}); end % 计算总能量分布情况下的相对贡献率 total_energy = sum(cellfun(@(x)sum(x.^2), imfs)); relative_contributions = cellfun(@(x)sum(x.^2)/total_energy, imfs); % 构建新的合成信号 reconstructed_signal = []; for idx=1:numel(relative_contributions) reconstructed_signal = [reconstructed_signal; ... repmat(mean(sample_entropies)*relative_contributions(idx)*imfs{idx}, 1)]; end plot(reconstructed_signal); title('Reconstructed Signal Using SGMD and Sample Entropy'); xlabel('Time Index'); ylabel('Amplitude'); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值