金豺GJO优化CNN-LSTM用于多变量负荷预测(Matlab)

金豺GJO优化CNN-LSTM用于多变量负荷预测(Matlab)

1..GJO金豺优化算法

GJO(Golden Jackal Optimization)金豺优化算法是一种基于自然界金豺行为的启发式优化算法。它模拟了金豺在寻找食物和繁殖过程中的行为,通过迭代搜索来寻找最优解。

该算法的步骤如下:

  1. 初始化种群:随机生成一定数量的个体作为初始种群。
  2. 评估适应度:根据问题的适应度函数,计算每个个体的适应度值。
  3. 更新个体位置:根据个体的适应度值和位置信息,更新个体的位置。
  4. 更新全局最优解:根据个体的适应度值,更新全局最优解。
  5. 更新个体速度:根据个体的位置信息和全局最优解,更新个体的速度。
  6. 更新个体位置:根据个体的速度,更新个体的位置。
  7. 判断终止条件:判断是否满足终止条件,如果满足则结束算法,否则返回步骤3。

GJO算法的优点包括:

  1. 简单易实现:GJO算法的实现相对简单,不需要复杂的数学模型和计算。
  2. 全局搜索能力强:GJO算法通过模拟金豺的行为,具有较强的全局搜索能力,可以找到较优的解。
  3. 适应性强:GJO算法可以适应不同类型的问题,适用于多种优化问题的求解

2.CNN-LSTM模型结构:
  CNN-LSTM模型结构是将卷积神经网络(CNN)和长短期记忆网络(LSTM)结合在一起,用于处理图像/序列数据。
首先,通过CNN层提取输入序列的空间特征。CNN层可以包含多个卷积层、池化层和扁平化层。
然后,将CNN层的输出通过TimeDistributed层进行包装,以便将CNN层的输出应用于每个时间步长。
 

本文提出了一种基于CNN-LSTM的多变量电力负荷预测方法,该方法将历史负荷与气象数据作为输入,输出一天96个时刻负荷值,建模学习特征内部动态变化规律,即多变量输入多输出模型。
3.以最小化CNN-LSTM网络期望输出与实际输出之间的均方差为适应度函数,即找到一组网络超参数,使得 CNN-LSTM的误差最小。 

代码获取


4.GJO优化CNN-LSTM部分、CNN-LSTM部分首先根据 GJO传入的参数进行解码,获得所需超参数,然后利用数据部分传入的训练集进行网络训练,最后对验证集进行预测,获得实际输出值与期望输出值的误差均方差,并将均方差作为适应度值返回给GJO部分。GTO部分根据适应度值进行优化,实现种群与全局最优解的更新。 通过该方法,最终可获得优化的网络超参数。
4.GJO找到一组网络超参数,使得 CNN-LSTM的误差最小,主要优化的超参数是:学习率,训练次数,batchsize,卷积层1的核数量、大小,池化层1的核大小,卷积层2的核数量、大小,池化层2的核大小,lstm层与全连接隐含层的节点数,共11个参数.
5.运行环境Matlab2020b及以上

通过实例对比GIO-CNN-LSTM和CNN-LSTM效果对比如下

代码获取

CNN-LSTM评价指标:

代码获取

GJI-CNN-LSTM评价指标

代码获取

  • 23
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
我了解您想要获取基于纵横交叉算法的GJO(Generalized Jensen Operator)优化MATLAB代码。很抱歉,目前我无法提供完整的代码,但我可以为您提供一个基本的代码框架,您可以根据自己的需求进行修改和完善。 ```matlab % GJO优化算法 % 步骤1:初始化 N = 50; % 种群数量 MaxIter = 100; % 最大迭代次数 Lb = -10; % 变量下界 Ub = 10; % 变量上界 dim = 2; % 变量维度 % 步骤2:生成初始种群 X = Lb + (Ub - Lb) * rand(N, dim); % 随机生成初始种群 % 步骤3:计算适应度 fit = CalculateFitness(X); % 自定义的计算适应度函数,根据问题进行修改 % 步骤4:迭代更新 for iter = 1:MaxIter % 选择操作 [parent1, parent2] = Selection(X, fit); % 自定义的选择操作函数,根据问题进行修改 % 交叉操作 offspring = Crossover(parent1, parent2); % 自定义的交叉操作函数,根据问题进行修改 % 变异操作 offspring = Mutation(offspring); % 自定义的变异操作函数,根据问题进行修改 % 合并父代和子代种群 X = [X; offspring]; % 更新适应度 fit = CalculateFitness(X); % 筛选操作 X = Selection(X, fit); % 自定义的筛选操作函数,根据问题进行修改 end % 步骤5:输出结果 bestSolution = X(1, :); bestFitness = fit(1); disp('最优解:'); disp(bestSolution); disp('最优适应度:'); disp(bestFitness); % 自定义的计算适应度函数 function fitness = CalculateFitness(population) % 根据问题进行适应度计算 % ... end % 自定义的选择操作函数 function [parent1, parent2] = Selection(population, fitness) % 根据问题进行选择操作 % ... end % 自定义的交叉操作函数 function offspring = Crossover(parent1, parent2) % 根据问题进行交叉操作 % ... end % 自定义的变异操作函数 function offspring = Mutation(parent) % 根据问题进行变异操作 % ... end ``` 请注意,上述代码只是一个基本的框架,您需要根据实际问题进行适当的修改和完善。在代码中的步骤3至步骤5之间的操作需要根据您的具体问题进行自定义。希望这个代码框架能对您有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值