15-14理想火车站定位(中)

问题描述

小F是A市的市长,正在计划在A市新建一个火车站以方便市民的日常出行。市区内的街道布局十分规整,形成网格状。从一个位置[x1, y1]到另一个位置[x2, y2]的距离计算方法为 |x1 - x2| + |y1 - y2|,即曼哈顿距离。

在初步考察后,市政府列出了M个可能的火车站建设点。为了使得市民到火车站的总旅行时间最短,小F希望选出一个最优位置作为火车站的地址。

请你帮助小F计算出哪一个位置最适合建设新火车站。

  • N: 市民的总人数。
  • M: 可建设火车站的备选位置数。
  • citizens: 一个列表,每个元素是一个元组 [x_i, y_i],表示第 i 位市民的居住位置。
  • locations: 一个列表,每个元素是一个元组 [p_i, q_i],表示第 i 个备选的火车站位置。

如果有多个火车站最优,那么选择第一次出现的那个。


测试样例

样例1:

输入:n = 4,m = 3,citizens = [[-1, -1], [-1, 1], [1, -1], [1, 1]],locations = [[3, 2], [1, 0], [0, 0]]
输出:[1, 0]

样例2:

输入:n = 2,m = 2,citizens = [[0, 0], [0, 4]],locations = [[0, 2], [0, 3]]
输出:[0, 2]

样例3:

输入:n = 3,m = 1,citizens = [[10, 10], [20, 20], [30, 30]],locations = [[15, 15]]
输出:[15, 15]

样例4:

输入:n = 5,m = 3,citizens = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]],locations = [[4, 5], [6, 7], [8, 9]]
输出:[4, 5]

样例5:

输入:n = 6,m = 2,citizens = [[10, 10], [20, 20], [30, 30], [40, 40], [50, 50], [60, 60]],locations = [[35, 35], [45, 45]]
输出:[35, 35]

def solution(n, m, citizens, locations):
    # 初始化最小总距离为正无穷,最优位置为空
    min_distance = float('inf')
    best_location = [-1, -1]

    # 遍历每一个候选火车站位置
    for loc in locations:
        total_distance = 0
        # 对于每位市民,计算到该位置的曼哈顿距离
        for citizen in citizens:
            total_distance += abs(citizen[0] - loc[0]) + abs(citizen[1] - loc[1])
        
        # 如果当前总距离小于已知最小距离,则更新最小距离和最优位置
        if total_distance < min_distance:
            min_distance = total_distance
            best_location = loc
    
    return best_location

if __name__ == "__main__":
    # 测试用例
    citizens1 = [[-1, -1], [-1, 1], [1, -1], [1, 1]]
    locations1 = [[3, 2], [1, 0], [0, 0]]
    print(solution(4, 3, citizens1, locations1) == [1, 0])  # 输出: True

    citizens2 = [[0, 0], [0, 4]]
    locations2 = [[0, 2], [0, 3]]
    print(solution(2, 2, citizens2, locations2) == [0, 2])  # 输出: True

    citizens3 = [[10, 10], [20, 20], [30, 30]]
    locations3 = [[15, 15]]
    print(solution(3, 1, citizens3, locations3) == [15, 15])  # 输出: True

    citizens4 = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
    locations4 = [[4, 5], [6, 7], [8, 9]]
    print(solution(5, 3, citizens4, locations4) == [4, 5])  # 输出: True

    citizens5 = [[10, 10], [20, 20], [30, 30], [40, 40], [50, 50], [60, 60]]
    locations5 = [[35, 35], [45, 45]]
    print(solution(6, 2, citizens5, locations5) == [35, 35])  # 输出: True

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值