目录
–
基本信息
错排问题是组合数学发展史上的一个重要问题,错排数也是一项重要的数。令
是
的一个错排,如果每个元素都不在其对应下标的位置上,即
,那么这种排列称为错位排列,或错排、重排(Derangement)。
我们从分析1 2 3 4的错排开始:
1 2 3 4的错排有:
4 3 2 1,4 1 2 3,4 3 1 2,
3 4 1 2,3 4 2 1,2 4 1 3,
2 1 4 3,3 1 4 2,2 3 4 1。
第一列是4分别与123互换位置,其余两个元素错排。
1 2 3 4->4 3 2 1,
1 2 3 4->3 4 1 2,
1 2 3 4-> 2 1 4 3
第2列是4分别与312(123的一个错排)的每一个数互换
3 1 2 4->4 1 2 3,
3 1 2 4->3 4 2 1,
3 1 2 4->3 1 4 2
第三列则是由另一个错排231和4换位而得到
2 3 1 4->4 3 1 2,
2 3 1 4->2 4 1 3,
2 3 1 4->2 3 4 1
上面的分析结果,实际上是给出一种产生错排的结果。
错排公式
递推关系
为求其递推关系,分两步走:
第一步,考虑第_n_个元素,把它放在某一个位置,比如位置_k_,一共有_n_-1种放法;
第二步,考虑第_k_个元素,这时有两种情况:(1)把它放到位置_n_,那么对于除_n_以外的_n_-1个元素,由于第_k_个元素放到了位置_n_,所以剩下_n_-2个元素的错排即可,有
种放法;(2)第_k_个元素不放到位置_n_,这时对于这_n_-1个元素的错排,有
种放法。
根据乘法和加法法则,综上得到
特殊地,
。此外,存在
因此,
。
通项公式求解
下面利用递推关系证明通项公式,可利用母函数方法,也可利用容斥原理。首先基于母函数方法进行证明,令
有递推关系得
因此
,
,
而1/(1-x)可以替换成无穷级数(无穷递缩等比数列)
故(由对应次数项系数相等)
此外,也可基于容斥原理进行证明。设
尾声
最后,我再重复一次,如果你想成为一个优秀的 Android 开发人员,请集中精力,对基础和重要的事情做深度研究。
对于很多初中级Android工程师而言,想要提升技能,往往是自己摸索成长,不成体系的学习效果低效漫长且无助。 整理的这些架构技术希望对Android开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
最后想要拿高薪实现技术提升薪水得到质的飞跃。最快捷的方式,就是有人可以带着你一起分析,这样学习起来最为高效,所以为了大家能够顺利进阶中高级、架构师,我特地为大家准备了一套高手学习的源码和框架视频等精品Android架构师教程,保证你学了以后保证薪资上升一个台阶。
当你有了学习线路,学习哪些内容,也知道以后的路怎么走了,理论看多了总要实践的。
进阶学习视频
附上:我们之前因为秋招收集的二十套一二线互联网公司Android面试真题 (含BAT、小米、华为、美团、滴滴)和我自己整理Android复习笔记(包含Android基础知识点、Android扩展知识点、Android源码解析、设计模式汇总、Gradle知识点、常见算法题汇总。)
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
附上:我们之前因为秋招收集的二十套一二线互联网公司Android面试真题 (含BAT、小米、华为、美团、滴滴)和我自己整理Android复习笔记(包含Android基础知识点、Android扩展知识点、Android源码解析、设计模式汇总、Gradle知识点、常见算法题汇总。)
[外链图片转存中…(img-eCGrXZTq-1715332251825)]
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!