先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
开启mysql数据库bin-log日志
1.如果是服务器
在my.cnf中添加binlog配置,并重启mysql数据库
server-id = 123
log_bin = mysql-bin
binlog_format = row
binlog_row_image = full
expire_logs_days = 10
gtid_mode = on
enforce_gtid_consistency = on
已经为 MySQL 设置了一些配置参数。下面是对这些参数的解释:
- server-id = 123:指定服务器的唯一标识符,通常用于区分不同的数据库服务器。
- log_bin = mysql-bin:启用二进制日志记录,以便在数据库出现故障时可以恢复数据。
- binlog_format = row:指定二进制日志的记录格式。row 格式会记录每个更改行的详细信息,这对于需要事务完整性的应用程序非常有用。
- binlog_row_image = full:设置 row 格式的二进制日志记录行的完整信息,包括列值、注释等。这有助于提高应用程序的可恢复性。
- expire_logs_days = 10:设置自动清理过期二进制日志文件的天数。在这个例子中,设置为 10 天。
- gtid_mode = on:启用全局事务 ID 模式,这使得基于 GTID 的复制成为可能。
- enforce_gtid_consistency = on:强制执行 GTID 一致性,确保事务在不同的 MySQL 实例之间保持一致。
2.如果在Windows使用小皮
在小皮面板里设置,如图:
打开bin日志开关
搭建Flink CDC java环境
添加maven相关pom
在pom里添加相关Flink CDC依赖
<!-- flink connector 基础包-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-base</artifactId>
<version>1.14.4</version>
</dependency>
<!-- CDC mysql 源-->
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-sql-connector-mysql-cdc</artifactId>
<version>2.3.0</version>
</dependency>
<!-- Flink Steam流处理-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>1.14.4</version>
</dependency>
<!-- flink java客户端-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.14.4</version>
</dependency>
<!-- 开启webui支持,默认是8081,默认没有开启-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_2.12</artifactId>
<version>1.14.4</version>
</dependency>
<!-- Flink Table API和SQL API使得在Flink中进行数据处理变得更加简单和高效
通过使用Table API和SQL API,可以像使用传统的关系型数据库一样,通过编写SQL语句或者使用类似于
Java的API进行数据处理和分析-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime_2.11</artifactId>
<version>1.14.4</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.11</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>2.0.6</version>
</dependency>
这是一段 Maven 依赖配置,它引入了 Flink Connector Base、CDC MySQL Source、Flink Streaming Java、Flink Java Client、Flink Runtime Web、Flink Table Runtime 和 Logback Classic。
这些依赖库提供了以下功能:
- Flink Connector Base:Flink 的连接器基础包,用于将 Flink 与其他系统进行集成。
- CDC MySQL Source:Flink 的 MySQL CDC 源,用于从 MySQL 数据库中读取数据流。
- Flink Streaming Java:Flink 的 Java 流处理 API,用于编写并发程序以处理数据流。
- Flink Java Client:Flink 的 Java API,用于在 Java 应用程序中使用 Flink。
- Flink Runtime Web:Flink 的 Web UI,用于监控和管理 Flink 集群。
- Flink Table Runtime:Flink 的 Table API,使在 Flink 中进行数据处理变得更加简单和高效。
- Logback Classic:日志记录库,用于记录应用程序的日志信息。
构建Sink
Flink CDC(Change Data Capture)中的Sink用于将CDC接收到的数据写入外部系统(如数据库或文件系统),以实现数据同步和数据备份等功能,并将其转换为DataStream流。然后,Sink将这个DataStream流写入到外部系统中,以便进行后续的数据处理和分析。
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
public class CustomSink extends RichSinkFunction<String> {
@Override
public void invoke(String value, Context context) throws Exception {
System.out.println("json->: "+value);
}
}
这段代码定义了一个名为CustomSink的类,它继承自RichSinkFunction类。RichSinkFunction是Flink CDC中用于将数据写入外部系统(如数据库或文件系统)的函数接口。CustomSink的作用是将CDC接收到的数据写入外部系统中。具体实现方式由子类CustomSink来定义。由于这个类继承了RichSinkFunction,因此可以使用Flink中的其他RichSink函数特性,例如设置日志级别、配置连接等,invoke则是处理函数。
main配置运行
如下面的代码,构建Flink CDC连接
public static void main(String[] args) throws Exception {
MySqlSourceBuilder<String> builder = MySqlSource.builder();
MySqlSource<String> source = builder.hostname("192.168.2.6")
.port(3306)
.databaseList("mydb")
.tableList("mydb.user")
.username("root")
.password("root")
.deserializer(new JsonDebeziumDeserializationSchema())
.includeSchemaChanges(true)
.build();
// 启动webui,绑定本地web-ui端口号
Configuration configuration=new Configuration();
configuration.setInteger(RestOptions.PORT,8081);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);
env.enableCheckpointing(5000);
env.fromSource(source, WatermarkStrategy.noWatermarks(),"MYSQL Source")
.addSink(new CustomSink());
env.execute();
}
这段代码是使用Flink构建一个数据流处理任务,从MySQL数据库中读取数据并进行处理。
首先,使用MySqlSourceBuilder创建一个MySqlSource对象,并设置连接参数(hostname、port、databaseList、tableList、username和password)以及反序列化器(JsonDebeziumDeserializationSchema)。然后,创建Configuration对象并设置WebUI端口号(RestOptions.PORT),接着使用StreamExecutionEnvironment创建一个执行环境,启用检查点(checkpointing)并将MySqlSource和自定义的Sink添加到执行环境中。最后,执行整个任务。
操作数据库查看结果
如图所示:
{
"before": null,
"after": {
"id": "1661935564737286146",
"qu\_type": 4,
"level": 1,
"image": "",
"content": "dos查看日期、时间",
"create\_time": 1685100091000,
"update\_time": 1685100091000,
"remark": "",
"analysis": ""
},
"source": {
"version": "1.6.4.Final",
"connector": "mysql",
"name": "mysql\_binlog\_source",
"ts\_ms": 0,
"snapshot": "false",
"db": "mydb",
"sequence": null,
"table": "t\_user",
"server\_id": 0,
"gtid": null,
"file": "",
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
![img](https://img-blog.csdnimg.cn/img_convert/11b15b9a5e9ee848de1ccae2f10038ae.png)
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
[外链图片转存中...(img-AgbMrrP4-1713171905829)]
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**