Matplotlib绘制函数的等高线与三维图像_matplotlib输出xyz三维图像(3)

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注go)
img

正文

(

x

,

y

)

=

x

e

(

x

2

y

2

)

f(x,y)=x e{-(x2+y^2)}

f(x,y)=xe−(x2+y2)

1. 网格点

在绘制曲线之前,先了解一下网格点的绘制。比如绘制一个3x3的网格,那么就需要9个坐标点:

(0,2)-----(1,2)-----(2,2)

(0,1)-----(1,1)-----(2,1)

(0,0)-----(1,0)-----(2,0)

将其x轴和y轴坐标分开表示:

x轴:

[[0, 1, 2],
[0, 1, 2],
[0, 1, 2]]

y轴:

[[0, 0, 0],
[1, 1, 1],
[2, 2, 2]]

numpy中可以使用np.meshgrid()来生成网格点:

import numpy as np
import matplotlib.pyplot as plt

10x10

x = np.linspace(-1.5, 1.5, num=10)
y = np.linspace(-1.5, 1.5, num=10)

generate grid

X, Y = np.meshgrid(x, y)
plt.plot(X, Y, marker=‘.’, linestyle=‘’)
plt.grid(True)
plt.show()

在这里插入图片描述

2. 等高线

绘制等高线需要的数据有点的坐标位置(x, y)以及坐标的高度z,高度z就是将坐标点(x, y)带入函数

f

(

x

,

y

)

f(x, y)

f(x,y)中计算得到的,在matplotlib中可以使用plt.contour()来绘制:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-1.5, 1.5, num=100)
y = np.linspace(-1.5, 1.5, num=100)
X, Y = np.meshgrid(x, y)
f = X * np.exp(-X**2 - Y**2)

fig = plt.figure()
plt.xlim(-1.5, 1.5)
plt.ylim(-1.5, 1.5)

draw

ax = plt.contour(X, Y, f, levels=10, cmap=plt.cm.cool)

add label

plt.clabel(ax, inline=True)

plt.savefig(‘img1.png’)

plt.show()

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
[外链图片转存中…(img-S8D2BVlq-1713335193882)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值